OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..590
Index entries for linear recurrences with constant coefficients, signature (48, 48, 48, 48, 48, -1176).
FORMULA
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1).
a(n) = -1176*a(n-6) + 48*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
MAPLE
seq(coeff(series((1+t)*(1-t^6)/(1-49*t+1224*t^6-1176*t^7), t, n+1), t, n), n = 0 .. 20); # G. C. Greubel, Aug 24 2019
MATHEMATICA
coxG[{6, 1176, -48}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Feb 18 2015 *)
CoefficientList[Series[(1+t)*(1-t^6)/(1-49*t+1224*t^6-1176*t^7), {t, 0, 20}], t] (* G. C. Greubel, Sep 15 2017 *)
PROG
(PARI) my(t='t+O('t^20)); Vec((1+t)*(1-t^6)/(1-49*t+1224*t^6-1176*t^7)) \\ G. C. Greubel, Sep 15 2017
(Magma) R<t>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^6)/(1-49*t+1224*t^6-1176*t^7) )); // G. C. Greubel, Aug 24 2019
(Sage)
def A164351_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^6)/(1-49*t+1224*t^6-1176*t^7)).list()
A164351_list(20) # G. C. Greubel, Aug 24 2019
(GAP) a:=[50, 2450, 120050, 5882450, 288240050, 14123761225];; for n in [7..20] do a[n]:=48*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -1176*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 24 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved