login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164351
Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1
1, 50, 2450, 120050, 5882450, 288240050, 14123761225, 692064240000, 33911144820000, 1661645952120000, 81420644594940000, 3989611239264000000, 195490933775422559400, 9579054924518618851200, 469373650608038610268800
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170769, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
FORMULA
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1).
a(n) = -1176*a(n-6) + 48*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
MAPLE
seq(coeff(series((1+t)*(1-t^6)/(1-49*t+1224*t^6-1176*t^7), t, n+1), t, n), n = 0 .. 20); # G. C. Greubel, Aug 24 2019
MATHEMATICA
coxG[{6, 1176, -48}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Feb 18 2015 *)
CoefficientList[Series[(1+t)*(1-t^6)/(1-49*t+1224*t^6-1176*t^7), {t, 0, 20}], t] (* G. C. Greubel, Sep 15 2017 *)
PROG
(PARI) my(t='t+O('t^20)); Vec((1+t)*(1-t^6)/(1-49*t+1224*t^6-1176*t^7)) \\ G. C. Greubel, Sep 15 2017
(Magma) R<t>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^6)/(1-49*t+1224*t^6-1176*t^7) )); // G. C. Greubel, Aug 24 2019
(Sage)
def A164351_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^6)/(1-49*t+1224*t^6-1176*t^7)).list()
A164351_list(20) # G. C. Greubel, Aug 24 2019
(GAP) a:=[50, 2450, 120050, 5882450, 288240050, 14123761225];; for n in [7..20] do a[n]:=48*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -1176*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 24 2019
CROSSREFS
Sequence in context: A162919 A163290 A163837 * A164695 A165182 A165726
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved