OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Rational Function Multiplicative Coefficients
Index entries for linear recurrences with constant coefficients, signature (1,-1,1).
FORMULA
Euler transform of length 4 sequence [4, -4, 0, 1].
Moebius transform is length 4 sequence [4, 2, 0, -4].
a(n) = 4 * b(n) unless n=0 and b(n) is multiplicative with b(2) = 3/2, b(2^e) = 1/2 if e>1, b(p^e) = 1 if p>2.
a(n) = a(-n) for all n in Z. a(n+4) = a(n) unless n=0 or n=-4. a(2*n + 1) = 4. a(4*n) = 2 unless n=0. a(4*n + 2) = 6.
G.f.: -1 + 4 / (1 - x) - 2 / (1 + x^2).
a(n) = 2 * A068073(n) unless n=0. - Michael Somos, Apr 17 2015
EXAMPLE
G.f. = 1 + 4*x + 6*x^2 + 4*x^3 + 2*x^4 + 4*x^5 + 6*x^6 + 4*x^7 + 2*x^8 + ...
MATHEMATICA
a[ n_] := -Boole[n == 0] + 4 - If[ EvenQ[n], (-1)^(n/2) 2, 0]; (* Michael Somos, Apr 17 2015 *)
a[ n_] := SeriesCoefficient[ -1 + 4/(1 - x) - 2/(1 + x^2), {x, 0, Abs@n}]; (* Michael Somos, Jan 07 2019 *)
LinearRecurrence[{1, -1, 1}, {1, 4, 6, 4}, 120] (* or *) PadRight[{1}, 120, {2, 4, 6, 4}] (* Harvey P. Dale, Aug 30 2024 *)
PROG
(PARI) {a(n) = -(n==0) + 4 - if( n%2 == 0, (-1)^(n/2) * 2, 0)};
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Aug 13 2009
STATUS
approved