login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062751
Coefficient array for certain polynomials N(4; k,x) (rising powers in x).
5
1, 4, -6, 4, -1, 22, -80, 139, -140, 84, -28, 4, 140, -851, 2500, -4536, 5516, -4616, 2640, -990, 220, -22, 969, -8420, 35504, -94584, 175564, -237600, 239250, -179960, 100078, -40040, 10920, -1820, 140, 7084, -80776, 448056
OFFSET
0,2
COMMENTS
The g.f. for the sequence of column r=3*k+j, k >= 0, j=1,2,3, of the staircase array A062750(n,r) is N(4; k,x)*(x^(k+1))/(1-x)^(3*k+1+j) with N(4; k,x) := sum(a(k,p)*x^p,p=0..3*k).
The m=0 column gives: A002293(n+1). The row sums give A000012 (powers of 1) and (unsigned) A062752.
The sequence of step width of this staircase array is [1,3,3,3,...], i.e. the degree of the row polynomials is [0,3,6,9,...]= A008585.
FORMULA
a(k, p) := [x^p]N(4; k, x) with N(4; k, x)=(N(4; k-1, x)-A002293(k)*(1-x)^(3*k+1))/x, N(4; 0, x) := 1.
a(n, k)= a(n-1, k+1)+((-1)^k)*binomial(3*n+1, k+1)*binomial(4*n+1, n)/(4*n+1) if k=0, .., (3*n-4); a(n, k)= ((-1)^k)*binomial(3*n+1, k+1)*binomial(4*n+1, n)/(4*n+1) if k=(3*n-3), ..., 3*n; else 0.
EXAMPLE
{1}; {4,-6,4,-1}; {22,-80,139,-140,84,-28,4}; ...; N(4; 1,x)= 4-6*x+4*x^2-x^3 =(2-x)*(2-2*x+x^2).
CROSSREFS
Sequence in context: A240444 A199358 A131890 * A135911 A164356 A181774
KEYWORD
sign,easy,tabf
AUTHOR
Wolfdieter Lang, Jul 12 2001
STATUS
approved