login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient array for certain polynomials N(4; k,x) (rising powers in x).
5

%I #6 Mar 31 2012 13:20:06

%S 1,4,-6,4,-1,22,-80,139,-140,84,-28,4,140,-851,2500,-4536,5516,-4616,

%T 2640,-990,220,-22,969,-8420,35504,-94584,175564,-237600,239250,

%U -179960,100078,-40040,10920,-1820,140,7084,-80776,448056

%N Coefficient array for certain polynomials N(4; k,x) (rising powers in x).

%C The g.f. for the sequence of column r=3*k+j, k >= 0, j=1,2,3, of the staircase array A062750(n,r) is N(4; k,x)*(x^(k+1))/(1-x)^(3*k+1+j) with N(4; k,x) := sum(a(k,p)*x^p,p=0..3*k).

%C The m=0 column gives: A002293(n+1). The row sums give A000012 (powers of 1) and (unsigned) A062752.

%C The sequence of step width of this staircase array is [1,3,3,3,...], i.e. the degree of the row polynomials is [0,3,6,9,...]= A008585.

%F a(k, p) := [x^p]N(4; k, x) with N(4; k, x)=(N(4; k-1, x)-A002293(k)*(1-x)^(3*k+1))/x, N(4; 0, x) := 1.

%F a(n, k)= a(n-1, k+1)+((-1)^k)*binomial(3*n+1, k+1)*binomial(4*n+1, n)/(4*n+1) if k=0, .., (3*n-4); a(n, k)= ((-1)^k)*binomial(3*n+1, k+1)*binomial(4*n+1, n)/(4*n+1) if k=(3*n-3), ..., 3*n; else 0.

%e {1}; {4,-6,4,-1}; {22,-80,139,-140,84,-28,4}; ...; N(4; 1,x)= 4-6*x+4*x^2-x^3 =(2-x)*(2-2*x+x^2).

%K sign,easy,tabf

%O 0,2

%A _Wolfdieter Lang_, Jul 12 2001