The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239579 a(n) = |{0 < k <= n: prime(prime(prime(k*n))) - 2 is prime}|. 1
 1, 0, 1, 0, 0, 2, 3, 2, 0, 3, 1, 2, 2, 3, 2, 2, 1, 3, 3, 1, 1, 1, 8, 4, 3, 1, 2, 4, 2, 2, 4, 5, 3, 4, 5, 3, 6, 4, 6, 3, 5, 5, 6, 3, 3, 10, 5, 10, 4, 3, 6, 4, 4, 7, 6, 5, 3, 3, 6, 5, 6, 3, 5, 9, 3, 6, 5, 8, 4, 9, 9, 10, 7, 12, 4, 9, 7, 7, 10, 11 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS Conjecture: (i) a(n) > 0 for all n > 9. (ii) If n > 0 is not equal to 5, then prime(prime(k*n)) + 2 is prime for some k = 1, ..., n. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 1..3000 Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014. EXAMPLE a(3) = 1 since prime(prime(prime(1*3))) - 2 = prime(prime(5)) - 2 = prime(11) - 2 = 31 - 2 = 29 is prime. MATHEMATICA p[n_]:=PrimeQ[Prime[Prime[Prime[n]]]-2] a[n_]:=Sum[If[p[k*n], 1, 0], {k, 1, n}] Table[a[n], {n, 1, 80}] CROSSREFS Cf. A000040, A001359, A006512, A238573. Sequence in context: A323695 A303121 A332921 * A165192 A104771 A307688 Adjacent sequences: A239576 A239577 A239578 * A239580 A239581 A239582 KEYWORD nonn AUTHOR Zhi-Wei Sun, Mar 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 15:49 EDT 2023. Contains 363148 sequences. (Running on oeis4.)