OFFSET
1,5
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 6, and a(n) = 1 only for n = 2, 3, 8, 11, 17. Moreover, for any n > 0 there exists a positive integer k < 3*sqrt(n) + 6 such that prime(k*n) + 2 is prime.
(ii) For any integer n > 6, prime(k^2*n) + 2 is prime for some k = 1, ..., n.
(iii) If n > 5, then prime(k^2*(n-k)) + 2 is prime for some 0 < k < n.
Clearly, each of the three parts implies the twin prime conjecture.
We have verified part (i) of the conjecture for n up to 2*10^6.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..5000
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
EXAMPLE
a(2) = 1 since prime(1*2) + 2 = 3 + 2 = 5 is prime.
a(3) = 1 since prime(1*3) + 2 = 5 + 2 = 7 is prime.
a(8) = 1 since prime(8*8) + 2 = 311 + 2 = 313 is prime.
a(11) = 1 since prime(3*11) + 2 = 137 + 2 = 139 is prime.
a(17) = 1 since prime(1*17) + 2 = 59 + 2 = 61 is prime.
MATHEMATICA
p[k_, n_]:=PrimeQ[Prime[k*n]+2]
a[n_]:=Sum[If[p[k, n], 1, 0], {k, 1, n}]
Table[a[n], {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 01 2014
STATUS
approved