The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218829 Number of ordered ways to write n = k + m with k > 0 and m > 0 such that prime(k) + 2 and prime(prime(m)) + 2 are both prime. 11
 0, 0, 1, 2, 2, 3, 2, 3, 4, 2, 3, 2, 2, 3, 2, 4, 3, 2, 3, 3, 3, 1, 3, 3, 1, 4, 4, 2, 3, 4, 4, 4, 4, 5, 3, 4, 4, 1, 4, 4, 3, 5, 4, 3, 3, 4, 6, 3, 5, 5, 3, 3, 3, 2, 4, 5, 4, 5, 4, 2, 3, 4, 4, 5, 5, 7, 4, 5, 2, 6, 4, 5, 7, 3, 5, 6, 2, 4, 3, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Conjecture: (i) a(n) > 0 for all n > 2, and a(n) = 1 only for n = 3, 22, 25, 38, 101, 273. (ii) Each n = 2, 3, ... can be written as k + m with k > 0 and m > 0 such that 6*k - 1, 6*k + 1 and prime(prime(m)) + 2 are all prime. (iii) Any integer n > 5 can be written as k + m with k > 0 and m > 0 such that phi(k) - 1, phi(k) + 1 and prime(prime(m)) + 2 are all prime, where phi(.) is Euler's totient function. (iv) If n > 2 is neither 10 nor 31, then n can be written as k + m with k > 0 and m > 0 such that prime(k) + 2 and prime(prime(prime(m))) + 2 are both prime. (v) If n > 1 is not equal to 133, then n can be written as k + m with k > 0 and m > 0 such that 6*k - 1, 6*k + 1 and prime(prime(prime(m))) + 2 are all prime. Clearly, each part of the conjecture implies the twin prime conjecture. We have verified part (i) for n up to 10^9. See the comments in A237348 for an extension of this part. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 1..10000 Andrei-Lucian Dragoi, The "Vertical" Generalization of the Binary Goldbach's Conjecture as Applied on "Iterative" Primes with (Recursive) Prime Indexes (i-primeths), Journal of Advances in Mathematics and Computer Science (2017), Vol. 25, No. 2, pp. 1-32. Zhi-Wei Sun, Unification of Goldbach's conjecture and the twin prime conjecture, a message to Number Theory List, Jan. 29, 2014. Zhi-Wei Sun, Super Twin Prime Conjecture, a message to Number Theory List, Feb. 6, 2014. Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014 EXAMPLE a(3) = 1 since 3 = 2 + 1 with prime(2) + 2 = 3 + 2 = 5 and prime(prime(1)) + 2 = prime(2) + 2 = 5 both prime. a(22) = 1 since 22 = 20 + 2 with prime(20) + 2 = 71 + 2 = 73 and prime(prime(2)) + 2 = prime(3) + 2 = 5 + 2 = 7 both prime. a(25) = 1 since 25 = 2 + 23 with prime(2) + 2 = 3 + 2 = 5 and prime(prime(23)) + 2 = prime(83) + 2 = 431 + 2 = 433 both prime. a(38) = 1 since 38 = 35 + 3 with prime(35) + 2 = 149 + 2 = 151 and prime(prime(3)) + 2 = prime(5) + 2 = 11 + 2 = 13 both prime. a(101) = 1 since 101 = 98 + 3 with prime(98) + 2 = 521 + 2 = 523 and prime(prime(3)) + 2 = prime(5) + 2 = 11 + 2 = 13 both prime. a(273) = 1 since 273 = 2 + 271 with prime(2) + 2 = 3 + 2 = 5 and prime(prime(271)) + 2 = prime(1741) + 2 = 14867 + 2 = 14869 both prime. MATHEMATICA pq[n_]:=PrimeQ[Prime[n]+2] PQ[n_]:=PrimeQ[Prime[Prime[n]]+2] a[n_]:=Sum[If[pq[k]&&PQ[n-k], 1, 0], {k, 1, n-1}] Table[a[n], {n, 1, 80}] CROSSREFS Cf. A000010, A000040, A001359, A002822, A006512, A072281, A182662, A199920, A236531, A236566, A236831, A236968, A237127, A237130, A237168, A237253, A237259, A237260, A237348. Sequence in context: A281726 A101037 A002199 * A237715 A238458 A182744 Adjacent sequences:  A218826 A218827 A218828 * A218830 A218831 A218832 KEYWORD nonn AUTHOR Zhi-Wei Sun, Feb 05 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 05:38 EDT 2020. Contains 333073 sequences. (Running on oeis4.)