|
|
A237168
|
|
Number of ways to write 2*n - 1 = 2*p + q with p, q, phi(p+1) - 1 and phi(p+1) + 1 all prime, where phi(.) is Euler's totient function.
|
|
6
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 2, 2, 2, 2, 3, 1, 3, 3, 2, 2, 4, 1, 1, 3, 2, 2, 3, 1, 1, 3, 2, 2, 2, 1, 2, 3, 2, 2, 4, 1, 4, 5, 2, 1, 6, 3, 3, 2, 3, 2, 5, 1, 2, 5, 3, 3, 4, 3, 2, 6, 4, 4, 5, 2, 3, 7, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,13
|
|
COMMENTS
|
Conjecture: (i) a(n) > 0 for all n > 12.
(ii) Any even number greater than 4 can be written as p + q with p, q, phi(p+2) - 1 and phi(p+2) + 1 all prime.
Part (i) implies both Lemoine's conjecture (cf. A046927) and the twin prime conjecture, while part (ii) unifies Goldbach's conjecture and the twin prime conjecture.
|
|
LINKS
|
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Unification of Goldbach's conjecture and the twin prime conjecture, a message to Number Theory List, Jan. 29, 2014.
|
|
EXAMPLE
|
a(9) = 1 since 2*9 - 1 = 2*7 + 3 with 7, 3, phi(7+1) - 1 = 3 and phi(7+1) + 1 = 5 all prime.
a(934) = 1 since 2*934 - 1 = 2*457 + 953 with 457, 953, phi(457+1) - 1 = 227 and phi(457+1) + 1 = 229 all prime.
|
|
MATHEMATICA
|
PQ[n_]:=PrimeQ[EulerPhi[n]-1]&&PrimeQ[EulerPhi[n]+1]
a[n_]:=Sum[If[PQ[Prime[k]+1]&&PrimeQ[2n-1-2*Prime[k]], 1, 0], {k, 1, PrimePi[n-1]}]
Table[a[n], {n, 1, 70}]
|
|
CROSSREFS
|
Cf. A000010, A000040, A001359, A002375, A002372, A006512, A046927, A072281, A236566, A237127, A237130.
Sequence in context: A301304 A005086 A358333 * A350959 A157372 A270559
Adjacent sequences: A237165 A237166 A237167 * A237169 A237170 A237171
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Zhi-Wei Sun, Feb 04 2014
|
|
STATUS
|
approved
|
|
|
|