login
A005086
Number of Fibonacci numbers 1,2,3,5,... dividing n.
23
1, 2, 2, 2, 2, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 3, 1, 3, 1, 3, 3, 2, 1, 4, 2, 3, 2, 2, 1, 4, 1, 3, 2, 3, 2, 3, 1, 2, 3, 4, 1, 4, 1, 2, 3, 2, 1, 4, 1, 3, 2, 3, 1, 3, 3, 3, 2, 2, 1, 4, 1, 2, 3, 3, 3, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 4, 1, 4, 4
OFFSET
1,2
COMMENTS
Indices of records are in A129655. - R. J. Mathar, Nov 02 2007
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) <= A072649(n). - Robert G. Wilson v, Dec 10 2006
Equals A051731 * A010056. - Gary W. Adamson, Nov 06 2007
G.f.: Sum_{n>=2} x^F(n)/(1-x^F(n)) where F(n) = A000045(n). - Joerg Arndt, Jan 06 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A079586 - 1 = 2.359885... . - Amiram Eldar, Dec 31 2023
MAPLE
with(combinat): for n from 1 to 200 do printf(`%d, `, sum(floor(n/fibonacci(k))-floor((n-1)/fibonacci(k)), k=2..15)) od:
MATHEMATICA
f[n_] := Block[{k = 1}, While[Fibonacci[k] <= n, k++ ]; Count[ Mod[n, Array[ Fibonacci, k - 1]], 0] - 1]; Array[f, 105] (* Robert G. Wilson v, Dec 10 2006 *)
PROG
(PARI) isfib(n)=my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8))
a(n)=sumdiv(n, d, isfib(d)) \\ Charles R Greathouse IV, Nov 06 2014
(Python)
from sympy import divisors
from sympy.ntheory.primetest import is_square
def A005086(n): return sum(1 for d in divisors(n, generator=True) if is_square(m:=5*d**2-4) or is_square(m+8)) # Chai Wah Wu, Mar 30 2023
(Python)
from itertools import count, takewhile
def F(f=1, g=1):
while True:
f, g = g, f+g;
yield f
def a(n):
return sum(1 for f in takewhile(lambda x: x<=n, F()) if n%f == 0)
print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Apr 03 2023
KEYWORD
nonn
EXTENSIONS
More terms from James A. Sellers, Feb 19 2001
Incorrect comment removed by Charles R Greathouse IV, Nov 06 2014
STATUS
approved