OFFSET
1,2
COMMENTS
Indices of records are in A129655. - R. J. Mathar, Nov 02 2007
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) <= A072649(n). - Robert G. Wilson v, Dec 10 2006
G.f.: Sum_{n>=2} x^F(n)/(1-x^F(n)) where F(n) = A000045(n). - Joerg Arndt, Jan 06 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A079586 - 1 = 2.359885... . - Amiram Eldar, Dec 31 2023
MAPLE
with(combinat): for n from 1 to 200 do printf(`%d, `, sum(floor(n/fibonacci(k))-floor((n-1)/fibonacci(k)), k=2..15)) od:
MATHEMATICA
f[n_] := Block[{k = 1}, While[Fibonacci[k] <= n, k++ ]; Count[ Mod[n, Array[ Fibonacci, k - 1]], 0] - 1]; Array[f, 105] (* Robert G. Wilson v, Dec 10 2006 *)
PROG
(PARI) isfib(n)=my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8))
a(n)=sumdiv(n, d, isfib(d)) \\ Charles R Greathouse IV, Nov 06 2014
(Python)
from sympy import divisors
from sympy.ntheory.primetest import is_square
def A005086(n): return sum(1 for d in divisors(n, generator=True) if is_square(m:=5*d**2-4) or is_square(m+8)) # Chai Wah Wu, Mar 30 2023
(Python)
from itertools import count, takewhile
def F(f=1, g=1):
while True:
f, g = g, f+g;
yield f
def a(n):
return sum(1 for f in takewhile(lambda x: x<=n, F()) if n%f == 0)
print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Apr 03 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Feb 19 2001
Incorrect comment removed by Charles R Greathouse IV, Nov 06 2014
STATUS
approved