The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005086 Number of Fibonacci numbers 1,2,3,5,... dividing n. 19
 1, 2, 2, 2, 2, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 3, 1, 3, 1, 3, 3, 2, 1, 4, 2, 3, 2, 2, 1, 4, 1, 3, 2, 3, 2, 3, 1, 2, 3, 4, 1, 4, 1, 2, 3, 2, 1, 4, 1, 3, 2, 3, 1, 3, 3, 3, 2, 2, 1, 4, 1, 2, 3, 3, 3, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 4, 1, 4, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) <= A072649(n). - Robert G. Wilson v, Dec 10 2006 Indices of records are in A129655. - R. J. Mathar, Nov 02 2007 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 FORMULA Equals A051731 * A010056. - Gary W. Adamson, Nov 06 2007 G.f.: sum_{n>=2} x^F(n)/(1-x^F(n)) where F(n)=A000045(n). - Joerg Arndt, Jan 06 2015 MAPLE with(combinat): for n from 1 to 200 do printf(`%d, `, sum(floor(n/fibonacci(k))-floor((n-1)/fibonacci(k)), k=2..15)) od: MATHEMATICA f[n_] := Block[{k = 1}, While[Fibonacci[k] <= n, k++ ]; Count[ Mod[n, Array[ Fibonacci, k - 1]], 0] - 1]; Array[f, 105] (* Robert G. Wilson v, Dec 10 2006 *) PROG (PARI) isfib(n)=my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)) a(n)=sumdiv(n, d, isfib(d)) \\ Charles R Greathouse IV, Nov 06 2014 CROSSREFS Cf. A038663, A051731, A010056. Sequence in context: A063473 A096859 A301304 * A237168 A157372 A270559 Adjacent sequences:  A005083 A005084 A005085 * A005087 A005088 A005089 KEYWORD nonn AUTHOR EXTENSIONS More terms from James A. Sellers, Feb 19 2001 Incorrect comment removed by Charles R Greathouse IV, Nov 06 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 13:24 EST 2020. Contains 331193 sequences. (Running on oeis4.)