OFFSET
1,15
LINKS
Lei Zhou, Table of n, a(n) for n = 1..10000
FORMULA
Additive with a(p^e) = 0 if p = 2, 1 otherwise.
a(n) = A001221(n) - 1 + n mod 2. - Reinhard Zumkeller, Sep 03 2003
O.g.f.: Sum_{p=odd prime} x^p/(1-x^p). - Geoffrey Critzer, Nov 06 2012
Sum_{k=1..n} a(k) = n * log(log(n)) + c * n + O(n/log(n)), where c = A077761 - 1/2 = -0.238502... . - Amiram Eldar, Sep 28 2023
MATHEMATICA
nn=100; a=Sum[x^p/(1-x^p), {p, Table[Prime[n], {n, 2, nn}]}]; Drop[CoefficientList[Series[a, {x, 0, nn}], x], 1] (* Geoffrey Critzer, Nov 06 2012 *)
Array[PrimeNu[#] - Boole[EvenQ[#]] &, 102] (* Lei Zhou, Dec 03 2012 *)
PROG
(Sage)
def A005087(n) : return len(prime_divisors(n)) + n % 2 - 1
[A005087(n) for n in (1..80)] # Peter Luschny, Feb 01 2012
(Haskell)
a005087 n = a001221 n + n `mod` 2 - 1 -- Reinhard Zumkeller, Feb 28 2014
(Python)
from sympy import primefactors
def A005087(n): return len(primefactors(n))+(n&1)-1 # Chai Wah Wu, Jul 07 2022
(PARI) a(n) = if (n%2, omega(n), omega(n)-1); \\ Michel Marcus, Sep 18 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Reinhard Zumkeller, Sep 03 2003
STATUS
approved