login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005090
Number of primes == 2 mod 3 dividing n.
5
0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 0, 2, 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 2, 1, 2, 1, 1, 0, 2, 1, 1, 1, 1, 2, 1, 0, 2, 1, 2, 0, 1, 0, 1, 1, 2, 0, 2, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 0, 2, 1, 1, 2, 1, 1, 2, 1, 2, 0, 2, 0, 2, 1, 1, 0, 1, 1, 2, 1, 2, 0, 1, 1, 2, 1, 1, 0, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2
OFFSET
1,10
LINKS
FORMULA
Additive with a(p^e) = 1 if p = 2 (mod 3), 0 otherwise.
From Antti Karttunen, Jul 10 2017: (Start)
a(1) = 0; for n > 1, floor((A020639(n) mod 3)/2) + a(A028234(n)).
a(n) = A001221(n) - A005088(n) - A079978(n).
(End)
MATHEMATICA
Array[DivisorSum[#, 1 &, And[PrimeQ@ #, Mod[#, 3] == 2] &] &, 120] (* Michael De Vlieger, Jul 11 2017 *)
PROG
(Scheme) (define (A005090 n) (if (= 1 n) 0 (+ (A004526 (modulo (A020639 n) 3)) (A005090 (A028234 n))))) ;; Antti Karttunen, Jul 10 2017
(PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, (f[k, 1] % 3) == 2); \\ Michel Marcus, Jul 11 2017
(Python)
from sympy import primefactors
def a(n): return sum(1 for p in primefactors(n) if p%3==2)
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 11 2017
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Antti Karttunen, Jul 10 2017
STATUS
approved