login
A005074
Sum of primes = 2 mod 3 dividing n.
8
0, 2, 0, 2, 5, 2, 0, 2, 0, 7, 11, 2, 0, 2, 5, 2, 17, 2, 0, 7, 0, 13, 23, 2, 5, 2, 0, 2, 29, 7, 0, 2, 11, 19, 5, 2, 0, 2, 0, 7, 41, 2, 0, 13, 5, 25, 47, 2, 0, 7, 17, 2, 53, 2, 16, 2, 0, 31, 59, 7, 0, 2, 0, 2, 5, 13, 0, 19, 23, 7, 71, 2, 0, 2, 5, 2, 11, 2, 0, 7, 0, 43, 83, 2, 22, 2, 29, 13, 89, 7, 0, 25, 0, 49, 5
OFFSET
1,2
LINKS
FORMULA
Additive with a(p^e) = p if p = 2 (mod 3), 0 otherwise.
a(n) = A008472(n) - A005070(n) - 3*A079978(n). - Antti Karttunen, Jul 10 2017
MATHEMATICA
Array[DivisorSum[#, # &, And[PrimeQ@ #, Mod[#, 3] == 2] &] &, 95] (* Michael De Vlieger, Jul 11 2017 *)
f[p_, e_] := If[Mod[p, 3] == 2, p, 0]; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 21 2022 *)
PROG
(Scheme) (define (A005074 n) (if (= 1 n) 0 (+ (if (= 2 (modulo (A020639 n) 3)) (A020639 n) 0) (A005074 (A028234 n))))) ;; Antti Karttunen, Jul 10 2017
(PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k, 1])%3) == 2, p)); \\ Michel Marcus, Jul 11 2017
KEYWORD
nonn
EXTENSIONS
More terms from Antti Karttunen, Jul 10 2017
STATUS
approved