login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078182
a(n) = Sum_{d|n, d == 2 (mod 3)} d.
20
0, 2, 0, 2, 5, 2, 0, 10, 0, 7, 11, 2, 0, 16, 5, 10, 17, 2, 0, 27, 0, 13, 23, 10, 5, 28, 0, 16, 29, 7, 0, 42, 11, 19, 40, 2, 0, 40, 0, 35, 41, 16, 0, 57, 5, 25, 47, 10, 0, 57, 17, 28, 53, 2, 16, 80, 0, 31, 59, 27, 0, 64, 0, 42, 70, 13, 0, 87, 23, 56, 71, 10, 0, 76, 5, 40, 88, 28, 0, 115
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{n>=0} (3*n+2)*x^(3*n+2)/(1-x^(3*n+2)).
A078181(n) + a(n) + 3*A000203(n/3) = A000203(n), where A000203 is defined as zero for non-integer arguments. - R. J. Mathar, May 11 2016
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/36 = 0.274155... (A353908). - Amiram Eldar, Nov 26 2023
MAPLE
A078182 := proc(n)
a := 0 ;
for d in numtheory[divisors](n) do
if modp(d, 3) =2 then
a :=a+d ;
end if;
end do:
a;
end proc: # R. J. Mathar, May 11 2016
MATHEMATICA
a[n_] := Plus @@ Select[Divisors[n], Mod[#, 3] == 2 &]; Array[a, 100] (* Giovanni Resta, May 11 2016 *)
PROG
(PARI) a(n) = sumdiv(n, d, d*((d%3) == 2)); \\ Michel Marcus, May 11 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Nov 21 2002
STATUS
approved