login
A035386
Number of partitions of n into parts congruent to 2 mod 3.
18
1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 4, 4, 6, 5, 7, 7, 9, 9, 12, 11, 15, 15, 18, 19, 23, 23, 29, 29, 35, 37, 43, 45, 53, 55, 64, 68, 78, 82, 95, 99, 114, 121, 136, 145, 164, 173, 196, 208, 232, 248, 276, 294, 328, 349, 386, 413, 456, 486, 537, 572, 629, 673, 737, 787
OFFSET
0,9
COMMENTS
a(n) = A116376(3*n). - _Reinhard Zumkeller_, Feb 15 2006
LINKS
James Mc Laughlin, Andrew V. Sills, Peter Zimmer, Rogers-Ramanujan-Slater Type Identities , arXiv:1901.00946 [math.NT]
FORMULA
a(n) = 1/n*Sum_{k=1..n} A078182(k)*a(n-k), a(0) = 1. - _Vladeta Jovovic_, Nov 21 2002
Euler transform of period 3 sequence [ 0, 1, 0, ...]. - _Michael Somos_, Jul 24 2007
a(n) ~ Gamma(2/3) * exp(sqrt(2*n)*Pi/3) / (2^(11/6) * sqrt(3) * Pi^(1/3) * n^(5/6)) * (1 + (Pi/72 - 5/(3*Pi)) / sqrt(2*n)). - _Vaclav Kotesovec_, Feb 26 2015, extended Jan 24 2017
G.f.: A(x) = Sum_{n >= 0} x^(n*(3*n-1))/Product_{k = 1..n} ((1 - x^(3*k)) *(1 - x^(3*k-1))). (Set z = x^2 and q = x^3 in Mc Laughlin et al., Section 1.3, Entry 7.) - _Peter Bala_, Feb 02 2021
MAPLE
g:=add(x^(n*(3*n-1))/mul((1-x^(3*k))*(1-x^(3*k-1)), k = 1..n), n = 0..6): gser:=series(g, x, 101): seq(coeff(gser, x, n), n = 0..100); # _Peter Bala_, Feb 02 2021
MATHEMATICA
nmax=100; CoefficientList[Series[Product[1/(1-x^(3*k+2)), {k, 0, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Feb 26 2015 *)
nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 3] == 2, Do[poly[[j + 1]] -= poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly2 = Take[poly, {2, nmax + 1}]; poly3 = 1 + Sum[poly2[[n]]*x^n, {n, 1, Length[poly2]}]; CoefficientList[Series[1/poly3, {x, 0, Length[poly2]}], x] (* _Vaclav Kotesovec_, Jan 13 2017 *)
nmax = 50; s = Range[0, nmax/3]*3 + 2;
Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* _Robert Price_, Aug 05 2020 *)
PROG
(PARI) {a(n)= if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - (k%3==2) * x^k, 1 + x * O(x^n)), n))} /* _Michael Somos_, Jul 24 2007 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
_Olivier GĂ©rard_
STATUS
approved