login
A244327
a(n) = floor((n*(n+1)/2) / sigma(n)) = floor(A000217(n) / A000203(n)).
4
1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 5, 2, 6, 4, 5, 4, 8, 4, 9, 5, 7, 7, 11, 5, 10, 8, 9, 7, 14, 6, 15, 8, 11, 11, 13, 7, 18, 12, 13, 9, 20, 9, 21, 11, 13, 15, 23, 9, 21, 13, 18, 14, 26, 12, 21, 13, 20, 19, 29, 10, 30, 20, 19, 16, 25, 15, 33, 18, 25, 17, 35, 13, 36
OFFSET
1,5
COMMENTS
RECORD transform of a(n) is A140475 (union of number 1 and primes >= 5).
Sequence of numbers n such that a(n) = a(n+1) = A244666.
LINKS
FORMULA
a(n) = A244328(n) + A244329(n) for n >= 7.
EXAMPLE
For n = 10; a(10) = floor(A000217(10) / A000203(10)) = floor(55 / 18) = 3.
MAPLE
a:= n-> floor(n*(n+1)/(2*numtheory[sigma](n))):
seq(a(n), n=1..100); # Alois P. Heinz, Mar 28 2018
MATHEMATICA
A244327[n_] := Floor[n*(n + 1)/(2*DivisorSigma[1, n])];
Array[A244327, 100] (* Paolo Xausa, Sep 01 2024 *)
PROG
(Magma) [Floor((n*(n+1)div 2) div (SumOfDivisors(n))): n in [1..1000]];
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jul 08 2014
STATUS
approved