login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191904
Square array read by antidiagonals up: T(n,k) = 1-k if k divides n, else 1.
5
0, 0, 1, 0, -1, 1, 0, 1, 1, 1, 0, -1, -2, 1, 1, 0, 1, 1, 1, 1, 1, 0, -1, 1, -3, 1, 1, 1, 0, 1, -2, 1, 1, 1, 1, 1, 0, -1, 1, 1, -4, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -1, -2, -3, 1, -5, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -1, 1, 1, 1, 1, -6, 1, 1, 1, 1, 1, 1, 0, 1, -2, 1, -4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -1, 1, -3, 1, 1, 1, -7, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,13
COMMENTS
Transposed variant of A177121. Array variant of A176079.
FORMULA
Conjecture: Sum_{n>=1} T(n,k)/n = log(k).
From Mats Granvik, Apr 24 2022: (Start)
Sum recurrence:
T(n, 1) = [n >= 1]*0;
T(n, k) = [n < k]*1;
T(n, k) = [n >= k](Sum_{i=1..k-1} T(n - i, k - 1) - Sum_{i=1..k-1} T(n - i, k)).
Product recurrence:
T(n, 1) = [n >= 1]*0;
T(n, k) = [n < k]*1;
T(n, k) = [n >= k](Product_{i=1..k-1} T(n - i, k - 1) - Product_{i=1..k-1} T(n - i, k)).
(End)
EXAMPLE
Table begins:
0..1..1..1..1..1..1..1..1...
0.-1..1..1..1..1..1..1..1...
0..1.-2..1..1..1..1..1..1...
0.-1..1.-3..1..1..1..1..1...
0..1..1..1.-4..1..1..1..1...
0.-1.-2..1..1.-5..1..1..1...
0..1..1..1..1..1.-6..1..1...
0.-1..1.-3..1..1..1.-7..1...
0..1.-2..1..1..1..1..1.-8...
MATHEMATICA
nn = 30; t[n_, k_] := t[n, k] = If[Mod[n, k] == 0, -(k - 1), 1]; MatrixForm[Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}]]
CROSSREFS
KEYWORD
sign,easy,tabl
AUTHOR
Mats Granvik, Jun 19 2011
STATUS
approved