login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191905
Composite deficient numbers k such that (product of proper divisors of k) mod (sum of proper divisors of k) is a prime number.
1
4, 9, 10, 25, 33, 39, 49, 57, 91, 93, 98, 105, 111, 119, 121, 145, 155, 169, 183, 185, 187, 189, 201, 205, 209, 215, 225, 235, 237, 242, 245, 265, 289, 291, 299, 305, 327, 335, 351, 355, 361, 371, 403, 413, 415, 417, 425, 427, 437, 469, 471, 475, 485, 493, 497, 515, 527, 529, 535, 543, 549, 553
OFFSET
1,1
LINKS
MAPLE
isA191905 := proc(n) if not isA125493(n) then false; else isprime( A191906(n)) ; end if; end proc:
for n from 3 to 710 do if isA191905(n) then printf("%d, ", n) ; end if; end do: # R. J. Mathar, Jun 27 2011
MATHEMATICA
fQ[n_]:=Module[{pd=Most[Divisors[n]]}, !PerfectNumberQ[n]&&CompositeQ[n] && DivisorSigma[ 1, n]<2n&& PrimeQ[Mod[Times@@pd, Total[pd]]]] Select[Range[2, 600], fQ] (* Harvey P. Dale, Jul 14 2024 *)
CROSSREFS
KEYWORD
nonn,less
AUTHOR
EXTENSIONS
Corrected by R. J. Mathar, Jun 27 2011
STATUS
approved