login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113432
Pierpont semiprimes: semiprimes of the form (2^K)*(3^L)+1.
10
4, 9, 10, 25, 33, 49, 55, 65, 82, 129, 145, 217, 289, 649, 865, 973, 1537, 1945, 2049, 2305, 3073, 4097, 4609, 5833, 6145, 6913, 8193, 8749, 9217, 11665, 13123, 15553, 20737, 23329, 24577, 27649, 31105, 34993, 41473, 62209, 69985, 73729, 78733
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Pierpont Prime
Eric Weisstein's World of Mathematics, Semiprime
FORMULA
{a(n)} = Intersection of {(2^K)*(3^L)+1} A055600 and semiprimes A001358. a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 2.
EXAMPLE
a(1) = 4 = (2^0)*(3^1)+1 = 2^2 hence the semiprime A001358(1).
a(2) = 9 = (2^3)*(3^0)+1 = 3^2 hence the semiprime A001358(3).
a(3) = 10 = (2^0)*(3^2)+1 = 2 * 5 hence the semiprime A001358(4).
a(4) = 25 = (2^3)*(3^1)+1 = 5^2 hence the semiprime A001358(9).
a(5) = 33 = (2^5)*(3^0)+1 = 3 * 11 hence the semiprime A001358(11).
a(6) = 49 = (2^4)*(3^1)+1 = 7^2 hence the semiprime A001358(17).
a(7) = 55 = (2^1)*(3^3)+1 = 5 * 11 hence the semiprime A001358(19).
MATHEMATICA
Select[Range[10^5], Plus @@ Last /@ FactorInteger[ # ] == 2 && Max @@ First /@ FactorInteger[ # - 1] < 5 &] (* Ray Chandler, Jan 24 2006 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 01 2005
STATUS
approved