login
A113429
Expansion of f(-x, -x^4) in powers of x where f(, ) is Ramanujan's general theta function.
8
1, -1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
For the g.f. identity see the Hardy-Wright reference, Theorem 355 on p. 284. - Wolfdieter Lang, Oct 28 2016
REFERENCES
G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, p. 93.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, p. 284.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Identities
FORMULA
Euler transform of period 5 sequence [-1, 0, 0, -1, -1, ...].
|a(n)| is the characteristic function of A085787.
G.f.: Product_{k>0} (1 - x^(5*k)) * (1 - x^(5*k-1)) * (1 - x^(5*k-4)) = Sum_{k in Z} (-1)^k * x^((5*k^2+3*k)/2).
f(a, b) = Sum_{k in Z} a^((k^2+k)/2) * b^((k^2-k)/2) is Ramanujan's general theta function.
G.f.: Sum_{n>=0} (x^(n*(n+1)) * Product_{k>=n+1} (1-x^k)). - Joerg Arndt, Apr 07 2011
From Wolfdieter Lang, Oct 30 2016: (Start)
a(n) = (-1)^k if n = b(2*k) for k >= 0, a(n) = (-1)^k if n = b(2*k-1), for k >= 1, and a(n) = 0 otherwise, where b(n) = A085787(n). See the second formula.
G.f.: Sum_{n>=0} (-1)^n*x^(n*(5*n+3)/2)*(1-x^(2*n+1)). See the Hardy reference, p. 93, G_1(x,x) from eq. (6.11.1) with C_n(x,x) = 1.
(End)
G.f.: Sum_{n>=0} (-1)^n*x^(n*(5*n-3)/2)*(1-x^(4*(2*n+1)). Reordered G_1(x,x) from the preceding formula. This is G_4(x,x) from Hardy, p. 93, eq. (6.11.1) with C_n(x,x) = 1. Note that Hardy uses only G_0, G_1 and G_2. - Wolfdieter Lang, Nov 01 2016
a(n) = -(1/n)*Sum_{k=1..n} A284361(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
EXAMPLE
G.f. = 1 - x - x^4 + x^7 + x^13 - x^18 - x^27 + x^34 + x^46 - x^55 - x^70 + ...
G.f. = q^9 - q^49 - q^169 + q^289 + q^529 - q^729 - q^1089 + q^1369 + q^1849 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^5] QPochhammer[ x^4, x^5] QPochhammer[ x^5], {x, 0, n}]; (* Michael Somos, Jun 26 2017 *)
a[ n_] := Module[{m = 40 n + 9, k}, If[IntegerQ[k = Sqrt[m]], If[Mod[k, 10] == 7, k = -k]; (-1)^Quotient[k, 10], 0]]; (* Michael Somos, Jun 26 2017 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, 1 - x^k*[1, 1, 0, 0, 1][k%5 + 1], 1 + x * O(x^n)), n))};
(PARI) {a(n) = my(m, k); if( n<0, 0, issquare(m = 40*n + 9, &k), if( k%10==7, k=-k); (-1)^(k\10), 0)}; /* Michael Somos, Oct 29 2016 */
CROSSREFS
Sequence in context: A358680 A186447 A118009 * A133100 A216230 A077606
KEYWORD
sign,easy
AUTHOR
Michael Somos, Oct 31 2005
STATUS
approved