login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113430
Expansion of f(-x, -x^2) * f(-x^10, -x^20) / f(-x^2, -x^8) in powers of x where f(, ) is Ramanujan's general theta function.
4
1, -1, 0, -1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^4, b = x.
REFERENCES
George E. Andrews, Richard Askey and Ranjan Roy, Special Functions, Cambridge University Press, 1999.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Eric Weisstein's World of Mathematics, Quintuple Product Identity
FORMULA
Expansion of f(x^7, x^8) - x * f(x^2, x^13) in power of x.
Expansion of G(x^2) * f(-x) where G() is the g.f. of A003114.
Euler transform of period 10 sequence [ -1, 0, -1, -1, -1, -1, -1, 0, -1, -1, ...].
|a(n)| is the characteristic function of the numbers in A093722.
The exponents in the q-series q * A(q^120) are the square of the numbers in A057538.
G.f.: Prod_{k>0} (1 - x^k) / ((1 - x^(10*k - 2)) * (1 - x^(10*k - 8))) = Sum_{k in Z} x^((15*k^2 + k) / 2) - x^((15*k^2 - 11*k + 2) / 2).
A(q^2) = 1 + Sum_{n >= 0} q^(n^2) * Product_{k >= 2*n+1} 1 - q^k = 1 - q^2 - q^6 + q^14 + q^16 - q^28 - q^40 + + - - . See Andrews et al., p. 591, Exercise 6(a). - Peter Bala, Dec 22 2024
EXAMPLE
G.f. = 1 - x - x^3 + x^7 + x^8 - x^14 - x^20 + x^29 + x^31 - x^42 - x^52 + ...
G.f. = q - q^121 - q^361 + q^841 + q^961 - q^1681 - q^2401 + q^3481 + q^3721 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x] / (QPochhammer[ x^2, x^10] QPochhammer[ x^8, x^10]), {x, 0, n}]; (* Michael Somos, Jan 06 2016 *)
PROG
(PARI) {a(n) = my(m); if( n<0 || !issquare( n*120 + 1, &m) || 1!=gcd(m, 30), 0, (-1)^(m%30\10))};
(PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, 1 - x^k * [1, 1, 0, 1, 1, 1, 1, 1, 0, 1][k%10 + 1], 1 + x * O(x^n)), n))};
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Michael Somos, Oct 31 2005
STATUS
approved