OFFSET
0,1
COMMENTS
REFERENCES
George E. Andrews, Richard Askey and Ranjan Roy, Special Functions, Cambridge University Press, 1999.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Eric Weisstein's World of Mathematics, Quintuple Product Identity
FORMULA
Expansion of f(x^7, x^8) - x * f(x^2, x^13) in power of x.
Expansion of G(x^2) * f(-x) where G() is the g.f. of A003114.
Euler transform of period 10 sequence [ -1, 0, -1, -1, -1, -1, -1, 0, -1, -1, ...].
|a(n)| is the characteristic function of the numbers in A093722.
The exponents in the q-series q * A(q^120) are the square of the numbers in A057538.
G.f.: Prod_{k>0} (1 - x^k) / ((1 - x^(10*k - 2)) * (1 - x^(10*k - 8))) = Sum_{k in Z} x^((15*k^2 + k) / 2) - x^((15*k^2 - 11*k + 2) / 2).
A(q^2) = 1 + Sum_{n >= 0} q^(n^2) * Product_{k >= 2*n+1} 1 - q^k = 1 - q^2 - q^6 + q^14 + q^16 - q^28 - q^40 + + - - . See Andrews et al., p. 591, Exercise 6(a). - Peter Bala, Dec 22 2024
EXAMPLE
G.f. = 1 - x - x^3 + x^7 + x^8 - x^14 - x^20 + x^29 + x^31 - x^42 - x^52 + ...
G.f. = q - q^121 - q^361 + q^841 + q^961 - q^1681 - q^2401 + q^3481 + q^3721 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x] / (QPochhammer[ x^2, x^10] QPochhammer[ x^8, x^10]), {x, 0, n}]; (* Michael Somos, Jan 06 2016 *)
PROG
(PARI) {a(n) = my(m); if( n<0 || !issquare( n*120 + 1, &m) || 1!=gcd(m, 30), 0, (-1)^(m%30\10))};
(PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, 1 - x^k * [1, 1, 0, 1, 1, 1, 1, 1, 0, 1][k%10 + 1], 1 + x * O(x^n)), n))};
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Michael Somos, Oct 31 2005
STATUS
approved