login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of f(-x, -x^2) * f(-x^10, -x^20) / f(-x^2, -x^8) in powers of x where f(, ) is Ramanujan's general theta function.
4

%I #25 Dec 26 2024 10:15:09

%S 1,-1,0,-1,0,0,0,1,1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,1,

%T 0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,

%U 0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

%N Expansion of f(-x, -x^2) * f(-x^10, -x^20) / f(-x^2, -x^8) in powers of x where f(, ) is Ramanujan's general theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^4, b = x.

%D George E. Andrews, Richard Askey and Ranjan Roy, Special Functions, Cambridge University Press, 1999.

%H G. C. Greubel, <a href="/A113430/b113430.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/QuintupleProductIdentity.html">Quintuple Product Identity</a>

%F Expansion of f(x^7, x^8) - x * f(x^2, x^13) in power of x.

%F Expansion of G(x^2) * f(-x) where G() is the g.f. of A003114.

%F Euler transform of period 10 sequence [ -1, 0, -1, -1, -1, -1, -1, 0, -1, -1, ...].

%F |a(n)| is the characteristic function of the numbers in A093722.

%F The exponents in the q-series q * A(q^120) are the square of the numbers in A057538.

%F G.f.: Prod_{k>0} (1 - x^k) / ((1 - x^(10*k - 2)) * (1 - x^(10*k - 8))) = Sum_{k in Z} x^((15*k^2 + k) / 2) - x^((15*k^2 - 11*k + 2) / 2).

%F A(q^2) = 1 + Sum_{n >= 0} q^(n^2) * Product_{k >= 2*n+1} 1 - q^k = 1 - q^2 - q^6 + q^14 + q^16 - q^28 - q^40 + + - - . See Andrews et al., p. 591, Exercise 6(a). - _Peter Bala_, Dec 22 2024

%e G.f. = 1 - x - x^3 + x^7 + x^8 - x^14 - x^20 + x^29 + x^31 - x^42 - x^52 + ...

%e G.f. = q - q^121 - q^361 + q^841 + q^961 - q^1681 - q^2401 + q^3481 + q^3721 + ...

%t a[ n_] := SeriesCoefficient[ QPochhammer[ x] / (QPochhammer[ x^2, x^10] QPochhammer[ x^8, x^10]), {x, 0, n}]; (* _Michael Somos_, Jan 06 2016 *)

%o (PARI) {a(n) = my(m); if( n<0 || !issquare( n*120 + 1, &m) || 1!=gcd(m, 30), 0, (-1)^(m%30\10))};

%o (PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, 1 - x^k * [1, 1, 0, 1, 1, 1, 1, 1, 0, 1][k%10 + 1], 1 + x * O(x^n)), n))};

%Y Cf. A003114, A010815, A057538, A093722.

%K sign,easy

%O 0,1

%A _Michael Somos_, Oct 31 2005