login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A208546 Expansion of f(-x^29, x^31) + x * f(-x^19, x^41) - x^3 * f(-x^11, x^49) + x^7 * f(x, -x^59) in powers of x where f() is Ramanujan's two-variable theta function. 2
1, 1, 0, -1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..2500

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

|a(n)| is the characteristic function of A093722.

The exponents in the q-series q * A(q^120) are the squares of the numbers in A057538.

Euler transform of a period 80 sequence.

G.f.: Sum_{k} (-1)^floor(k/4) * x^(3*k * (5*k + 1)/2) * (x^(4*k + 1) + x^(-16*k + 7)).

EXAMPLE

G.f. = 1 + x - x^3 + x^7 + x^8 + x^14 - x^20 - x^29 + x^31 + x^42 - x^52 - x^66 + ...

G.f. = q + q^121 - q^361 + q^841 + q^961 + q^1681 - q^2401 - q^3481 + q^3721 + ...

MATHEMATICA

f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; CoefficientList[Series[f[-x^29, x^31] + x*f[-x^19, x^41] - x^3*f[-x^11, x^49] + x^7*f[x, -x^59], {x, 0, 50}], x] (* G. C. Greubel, Aug 11 2018 *)

PROG

(PARI) {a(n) = local(m); if( issquare( 120*n + 1, &m), (-1)^(m \ 40 + m \ 12))}

CROSSREFS

Cf. A057538, A093722.

Sequence in context: A143259 A207710 A207735 * A113430 A214529 A113681

Adjacent sequences:  A208543 A208544 A208545 * A208547 A208548 A208549

KEYWORD

sign

AUTHOR

Michael Somos, Feb 28 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 17:28 EDT 2019. Contains 328268 sequences. (Running on oeis4.)