login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214529
Expansion of f(x^29, -x^31) - x * f(x^19, -x^41) + x^3 * f(x^11, -x^49) - x^7 * f(-x, x^59) in powers of x where f() is Ramanujan's two-variable theta function.
1
1, -1, 0, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
|a(n)| is the characteristic function of A093722.
The exponents in the q-series q * A(q^120) are the squares of the numbers in A057538.
Euler transform of a period 80 sequence.
G.f.: Sum_{k} (-1)^(floor((k - 1)/2) + floor(k/4)) * x^(3*k * (5*k + 1)/2) * (x^(4*k + 1) + x^(-16*k + 7)).
a(n) = (-1)^n * A208546(n).
EXAMPLE
1 - x + x^3 - x^7 + x^8 + x^14 - x^20 + x^29 - x^31 + x^42 - x^52 - x^66 + ...
q - q^121 + q^361 - q^841 + q^961 + q^1681 - q^2401 + q^3481 - q^3721 + ...
MATHEMATICA
a[ n_] := Module[ {m}, If[ n >= 0 && OddQ[ DivisorSigma[ 0, 120 n + 1]], m = Sqrt[ 120 n + 1]; (-1)^(Quotient[ m, 40] + Quotient[ m, 3]), 0]]; Table[a[n], {n, 0, 30}]
PROG
(PARI) {a(n) = local(m); if( issquare( 120*n + 1, &m), (-1)^(m \ 40 + m \ 3))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 20 2012
STATUS
approved