login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A214528
a(n) = least k>0 such that n! divides Fibonacci(k).
4
1, 1, 3, 12, 12, 60, 60, 120, 480, 4320, 43200, 43200, 518400, 3628800, 7257600, 108864000, 1741824000, 1741824000, 31352832000, 31352832000, 627056640000, 13168189440000, 289700167680000, 289700167680000, 6952804024320000, 173820100608000000, 4519322615808000000, 122021710626816000000
OFFSET
0,3
COMMENTS
b(n) = a(n)/a(n-1) begins: 1, 3, 4, 1, 5, 1, 2, 4, 9, 10, 1, 12, 7, 2, 15, 16, ...
LINKS
FORMULA
a(n) = A001177(n!)
EXAMPLE
Least k such that 2! divides Fibonacci(k) is 3: Fibonacci(3)=2, so a(2)=3.
Least k such that 3! divides Fibonacci(k) is 12: Fibonacci(12)=144, so a(3)=12.
PROG
(Python)
n = f = c = d = 1 # f = (n-1)!
fc1 = fd1 = 0 # Fib[c-1], Fib[d-1]
fc = fd = 1 # Fib[c], Fib[d]
while 1:
if fc % f:
if c==d:
fd, fd1 = fc, fc1
t = fc*fc
fc, fc1 = (2*fc*fc1+t), (fc1*fc1+t)
else:
fc, fc1 = (fc*(fd1+fd) + fc1*fd), (fc*fd + fc1*fd1)
c += d
#print '.',
else:
print c,
d = c
f *= n
n += 1
CROSSREFS
Cf. A001177 (least k such that n divides Fibonacci(k)).
Cf. A132632 (least k such that n^2 divides Fibonacci(k)).
Cf. A132633 (least k such that n^3 divides Fibonacci(k)).
Cf. A215011 (least k such that triangular(n) divides Fibonacci(k)).
Sequence in context: A340354 A263672 A233287 * A217763 A234749 A024546
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Aug 08 2012
EXTENSIONS
Terms a(17) onward from Max Alekseyev, Jan 30 2014
STATUS
approved