login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191903 Number of compositions of odd natural numbers into 4 parts <= n. 3
0, 8, 40, 128, 312, 648, 1200, 2048, 3280, 5000, 7320, 10368, 14280, 19208, 25312, 32768, 41760, 52488, 65160, 80000, 97240, 117128, 139920, 165888, 195312, 228488, 265720, 307328, 353640, 405000, 461760, 524288, 592960, 668168, 750312 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Adi Dani, Restricted compositions of natural numbers.

Index entries for linear recurrences with constant coefficients, signature (4,-5,0,5,-4,1).

FORMULA

a(n) = ((n + 1)^4 - (1 + (-1)^n)/2)/2.

From R. J. Mathar, Jun 22 2011: (Start)

G.f.: 8*x*(1+x+x^2) / ( (1+x)*(1-x)^5 ).

a(n) = 8*A011863(n+1). (End)

a(n) = floor((n+1)^4/2). - Wesley Ivan Hurt, Jun 14 2013

Sum_{n>=1} 1/a(n) = 3/4 + Pi^4/720 - tanh(Pi/2)*Pi/4. - Amiram Eldar, Aug 13 2022

EXAMPLE

a(1) = 8 compositions of odd numbers into 4 parts < 1.

1:(0,0,0,1),(0,0,1,1),(0,1,0,0),(1,0,0,0)

3:(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)

MATHEMATICA

Table[Floor[1/2*((n + 1)^4 - (1 + (-1)^n)/2)], {n, 0, 30}]

PROG

(Magma) [((n + 1)^4 - (1 + (-1)^n)/2)/2: n in [0..50]]; // Vincenzo Librandi, Jul 04 2011

CROSSREFS

Cf. A011863, A171714.

Sequence in context: A105374 A162668 A227733 * A028596 A264602 A125198

Adjacent sequences: A191900 A191901 A191902 * A191904 A191905 A191906

KEYWORD

nonn,easy

AUTHOR

Adi Dani, Jun 19 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 05:12 EST 2022. Contains 358362 sequences. (Running on oeis4.)