login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171714
a(n) = ceiling((n+1)^4/2).
7
1, 8, 41, 128, 313, 648, 1201, 2048, 3281, 5000, 7321, 10368, 14281, 19208, 25313, 32768, 41761, 52488, 65161, 80000, 97241, 117128, 139921, 165888, 195313, 228488, 265721, 307328, 353641, 405000, 461761, 524288, 592961, 668168, 750313, 839808
OFFSET
0,2
COMMENTS
Number of compositions of even natural numbers into 4 parts <=n.
Number of ways of placings of an even number of indistinguishable objects into 4 distinguishable boxes with the condition that in each box there can be at most n objects.
LINKS
FORMULA
a(n) = 1/2*((n + 1)^4 + ((1 + (-1)^n)*1/2)^4).
a(n) = +4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +1*a(n-6).
G.f.: (1 + 4*x + 14*x^2 + 4*x^3 + x^4)/((1 + x)*(1 - x)^5).
a(n) = (n+1)^4 - floor((n+1)^4/2). - Bruno Berselli, Jan 18 2017
EXAMPLE
a(1)=8: there are 8 compositions of even natural numbers into 4 parts <=1
(0,0,0,0);
(0,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,1), (1,0,1,0), (1,1,0,0);
(1,1,1,1).
a(2)=41: there are 41 compositions of even natural numbers into 4 parts <=2
for 0: (0,0,0,0);
for 2: (0,0,0,2), (0,0,2,0), (0,2,0,0), (2,0,0,0), (0,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,1), (1,0,1,0), (1,1,0,0);
for 4: (0,0,2,2), (0,2,0,2), (0,2,2,0), (2,0,0,2), (2,0,2,0), (2,2,0,0), (0,1,1,2), (0,1,2,1), (0,2,1,1), (1,0,1,2), (1,0,2,1), (1,1,0,2), (1,1,2,0), (1,2,0,1), (1,2,1,0), (2,0,1,1), (2,1,0,1), (2,1,1,0), (1,1,1,1);
for 6: (0,2,2,2), (2,0,2,2), (2,2,0,2), (2,2,2,0), (1,1,2,2), (1,2,1,2), (1,2,2,1), (2,1,1,2), (2,1,2,1), (2,2,1,1);
for 8: (2,2,2,2).
MATHEMATICA
Table[1/2((n + 1)^4 + ((1 + (-1)^n)*1/2)^4), {n, 0, 25}]
Ceiling[Range[40]^4/2] (* Bruno Berselli, Jan 18 2017 *)
PROG
(Magma) [1/2*((n+1)^4+((1+(-1)^n)*1/2)^4): n in [0..40]]; // Vincenzo Librandi, Jun 16 2011
(PARI) a(n) = ceil(n^4/2); \\ Michel Marcus, Dec 14 2013
CROSSREFS
Sequence in context: A326286 A250322 A135797 * A342034 A304160 A133106
KEYWORD
nonn,easy
AUTHOR
Adi Dani, May 29 2011
EXTENSIONS
Better name from Enrique Pérez Herrero, Dec 14 2013
STATUS
approved