OFFSET
0,2
COMMENTS
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..100
FORMULA
a(n) = [x^(n*(n+1))] Sum_{k>=0} (k+1) * x^k * (1 + x^k)^k / (1 + x^(k+1))^(k+2).
a(n) = [x^(n*(n+1))] Sum_{k>=0} (k+1) * (-x)^k * (1 - x^k)^k / (1 - x^(k+1))^(k+2).
a(n) = [x^(n*(n+1))] Sum_{m>=0} (m+1) * x^m * Sum_{k=0..m} binomial(m,k) * (x^m - x^k)^(m-k).
a(n) = [x^(n*(n+1))] Sum_{m>=0} (m+1) * x^m * Sum_{k=0..m} binomial(m,k) * (-1)^k * (x^m + x^k)^(m-k).
a(n) = [x^(n*(n+1))] Sum_{m>=0} (m+1) * x^m * Sum_{k=0..m} binomial(m,k) * (-1)^k * Sum_{j=0..m-k} binomial(m-k,j) * x^((m-k)*(m-j)).
EXAMPLE
Given the g.f. of A326285, G(x) = Sum_{n>=0} (n+1) * x^n * (1 + x^n)^n / (1 + x^(n+1))^(n+2), i.e.,
G(x) = 1/(1 + x)^2 + 2*x*(1 + x)/(1 + x^2)^3 + 3*x^2*(1 + x^2)^2/(1 + x^3)^4 + 4*x^3*(1 + x^3)^3/(1 + x^4)^5 + 5*x^4*(1 + x^4)^4/(1 + x^5)^6 + 6*x^5*(1 + x^5)^5/(1 + x^6)^7 + 7*x^6*(1 + x^6)^6/(1 + x^7)^8 + 8*x^7*(1 + x^7)^7/(1 + x^8)^9 + ...
and writing G(x) as a power series in x starting as
G(x) = 1 + 8*x^2 - 6*x^3 + 10*x^4 + 41*x^6 - 64*x^7 + 48*x^8 + 82*x^10 - 84*x^11 + 90*x^12 - 300*x^13 + 532*x^14 - 284*x^15 + 34*x^16 + 428*x^18 - 892*x^19 + 671*x^20 - 960*x^21 + 2620*x^22 - 2440*x^23 + 1184*x^24 - 1440*x^25 + 1408*x^26 - 420*x^27 + 618*x^28 - 3024*x^29 + 6788*x^30 - 8274*x^31 + 11022*x^32 + ...
then the coefficients of x^(n*(n+1)) in G(x) form this sequence.
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 01 2019
STATUS
approved