login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326286
a(n) equals the coefficient of x^(n*(n+1)) in Sum_{m>=0} (m+1) * x^m * (1 + x^m)^m / (1 + x^(m+1))^(m+2) for n >= 0.
3
1, 8, 41, 90, 671, 6788, 31803, 119486, 746315, 1959108, 17687917, 168219722, 1612302467, 6734874480, 30113355681, 146636111898, 714115126295, 4578149141156, 16402101919131, 158506042034472, 1074010290985493, 7994020873236474, 64888090981118585, 366989246419220666, 1682317245914363391, 6686668206846701272, 28987038620286638765, 149983846501792016730, 1140728507133902950163, 7842482827496240439354, 30507352871067667404773
OFFSET
0,2
COMMENTS
a(n) = A326285(n*(n+1)) for n >= 0.
a(2*n) = 1 (mod 2) for n > 0.
It appears that all the odd terms in A326285 occur at even positions in this sequence.
LINKS
FORMULA
a(n) = [x^(n*(n+1))] Sum_{k>=0} (k+1) * x^k * (1 + x^k)^k / (1 + x^(k+1))^(k+2).
a(n) = [x^(n*(n+1))] Sum_{k>=0} (k+1) * (-x)^k * (1 - x^k)^k / (1 - x^(k+1))^(k+2).
a(n) = [x^(n*(n+1))] Sum_{m>=0} (m+1) * x^m * Sum_{k=0..m} binomial(m,k) * (x^m - x^k)^(m-k).
a(n) = [x^(n*(n+1))] Sum_{m>=0} (m+1) * x^m * Sum_{k=0..m} binomial(m,k) * (-1)^k * (x^m + x^k)^(m-k).
a(n) = [x^(n*(n+1))] Sum_{m>=0} (m+1) * x^m * Sum_{k=0..m} binomial(m,k) * (-1)^k * Sum_{j=0..m-k} binomial(m-k,j) * x^((m-k)*(m-j)).
EXAMPLE
Given the g.f. of A326285, G(x) = Sum_{n>=0} (n+1) * x^n * (1 + x^n)^n / (1 + x^(n+1))^(n+2), i.e.,
G(x) = 1/(1 + x)^2 + 2*x*(1 + x)/(1 + x^2)^3 + 3*x^2*(1 + x^2)^2/(1 + x^3)^4 + 4*x^3*(1 + x^3)^3/(1 + x^4)^5 + 5*x^4*(1 + x^4)^4/(1 + x^5)^6 + 6*x^5*(1 + x^5)^5/(1 + x^6)^7 + 7*x^6*(1 + x^6)^6/(1 + x^7)^8 + 8*x^7*(1 + x^7)^7/(1 + x^8)^9 + ...
and writing G(x) as a power series in x starting as
G(x) = 1 + 8*x^2 - 6*x^3 + 10*x^4 + 41*x^6 - 64*x^7 + 48*x^8 + 82*x^10 - 84*x^11 + 90*x^12 - 300*x^13 + 532*x^14 - 284*x^15 + 34*x^16 + 428*x^18 - 892*x^19 + 671*x^20 - 960*x^21 + 2620*x^22 - 2440*x^23 + 1184*x^24 - 1440*x^25 + 1408*x^26 - 420*x^27 + 618*x^28 - 3024*x^29 + 6788*x^30 - 8274*x^31 + 11022*x^32 + ...
then the coefficients of x^(n*(n+1)) in G(x) form this sequence.
PROG
(PARI) {A326285(n) = my(A=sum(m=0, n, (m+1) * x^m * (1 + x^m +x*O(x^n))^m/(1 + x^(m+1) +x*O(x^n))^(m+2) )); polcoeff(A, n)}
a(n) = A326285(n*(n+1))
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A093104 A120646 A041116 * A250322 A135797 A171714
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 01 2019
STATUS
approved