login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191901
Number of compositions of odd natural numbers into 6 parts <= n.
1
0, 32, 364, 2048, 7812, 23328, 58824, 131072, 265720, 500000, 885780, 1492992, 2413404, 3764768, 5695312, 8388608, 12068784, 17006112, 23522940, 32000000, 42883060, 56689952, 74017944, 95551488, 122070312, 154457888, 193710244, 240945152, 297411660, 364500000, 443751840
OFFSET
0,2
FORMULA
a(n) = ((n + 1)^6 - (1 + (-1)^n)/2)/2.
G.f. -4*x*(8+43*x+78*x^2+43*x^3+8*x^4) / ( (1+x)*(x-1)^7 ). - R. J. Mathar, Jun 26 2011
a(0)=0, a(1)=32, a(2)=364, a(3)=2048, a(4)=7812, a(5)=23328, a(6)=58824, a(7)=131072, a(n)=6*a(n-1)-14*a(n-2)+14*a(n-3)-14*a(n-5)+ 14*a(n-6)- 6*a(n-7)+a(n-8). - Harvey P. Dale, Apr 12 2015
EXAMPLE
a(1)=32 compositions of odd numbers into 6 parts <=1.
1:(0,0,0,0,0,1)-->6!/(5!1!)= 6
3:(0,0,0,1,1,1)-->6!/(3!3!)=20
5:(0,1,1,1,1,1)-->6!/(1!5!)= 6
-------------------------------------
32
MAPLE
A191901:=n->((n + 1)^6 - (1 + (-1)^n)/2)/2: seq(A191901(n), n=0..50); # Wesley Ivan Hurt, Apr 10 2017
MATHEMATICA
Table[Floor[1/2*((n + 1)^6 - (1 + (-1)^n)/2)], {n, 0, 30}]
LinearRecurrence[{6, -14, 14, 0, -14, 14, -6, 1}, {0, 32, 364, 2048, 7812, 23328, 58824, 131072}, 40] (* Harvey P. Dale, Apr 12 2015 *)
PROG
(Magma) [((n + 1)^6 - (1 + (-1)^n)/2)/2 : n in [0..25]]; // Vincenzo Librandi, Jul 03 2011
CROSSREFS
Sequence in context: A302818 A303511 A240787 * A191489 A055752 A362234
KEYWORD
nonn,easy
AUTHOR
Adi Dani, Jun 19 2011
STATUS
approved