login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191489
Number of compositions of even natural numbers into 6 parts <= n.
5
1, 32, 365, 2048, 7813, 23328, 58825, 131072, 265721, 500000, 885781, 1492992, 2413405, 3764768, 5695313, 8388608, 12068785, 17006112, 23522941, 32000000, 42883061, 56689952, 74017945, 95551488, 122070313, 154457888
OFFSET
0,2
COMMENTS
Number of ways of placing of an even number of indistinguishable objects in 6 distinguishable boxes with condition that in each box can be at most n objects.
FORMULA
a(n) = ((n + 1)^6 + (1+(-1)^n)/2 )/2.
G.f.: (x^2 + 10*x + 1)*(x^4 + 16*x^3 + 26*x^2 + 16*x + 1) / ( (1+x)*(1-x)^7 ). - R. J. Mathar, Jun 06 2011
a(2n) = A175113(n). - R. J. Mathar, Jun 07 2011
EXAMPLE
a(1)=32 compositions of even natural numbers in 6 parts <= 1 are
:(0,0,0,0,0,0)--> 6!/(6!0!) = 1
:(0,0,0,0,1,1)--> 6!/(4!2!) = 15
:(0,0,1,1,1,1)--> 6!/(2!4!) = 15
:(1,1,1,1,1,1)--> 6!/(0!6!) = 1
a(2)=365 compositions of even natural numbers in 6 parts <= 2 are
:(0,0,0,0,0,0)--> 6!/(6!0!0!) = 1
:(0,0,0,0,1,1)--> 6!/(4!2!0!) = 15
:(0,0,0,0,0,2)--> 6!/(5!0!1!) = 6
:(0,0,1,1,1,1)--> 6!/(2!4!0!) = 15
:(0,0,0,1,1,2)--> 6!/(3!2!1!) = 60
:(0,0,0,0,2,2)--> 6!/(4!0!2!) = 15
:(0,1,1,1,1,2)--> 6!/(1!4!1!) = 30
:(0,0,0,2,2,2)--> 6!/(3!0!3!) = 20
:(0,0,1,1,2,2)--> 6!/(2!2!2!) = 90
:(1,1,1,1,1,1)--> 6!/(0!6!0!) = 1
:(0,1,1,2,2,2)--> 6!/(1!2!3!) = 60
:(0,0,2,2,2,2)--> 6!/(2!0!4!) = 15
:(1,1,1,1,2,2)--> 6!/(0!4!2!) = 15
:(0,2,2,2,2,2)--> 6!/(1!0!5!) = 6
:(1,1,2,2,2,2)--> 6!/(0!2!4!) = 15
:(2,2,2,2,2,2)--> 6!/(0!0!6!) = 1
MATHEMATICA
Table[1/2*((n + 1)^6 + (1 + (-1)^n)*1/2), {n, 0, 25}]
PROG
(Magma) [((n + 1)^6 + (1+(-1)^n)/2 )/2: n in [0..40]]; // Vincenzo Librandi, Jun 16 2011
CROSSREFS
Cf. A036486 (3 parts), A171714 (4 parts), A191484 (5 parts), A191494 (7 parts), A191495 (8 parts).
Sequence in context: A303511 A240787 A191901 * A055752 A362234 A250170
KEYWORD
nonn,easy
AUTHOR
Adi Dani, Jun 03 2011
STATUS
approved