login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036486
a(n) = ceiling((n^3)/2).
7
0, 1, 4, 14, 32, 63, 108, 172, 256, 365, 500, 666, 864, 1099, 1372, 1688, 2048, 2457, 2916, 3430, 4000, 4631, 5324, 6084, 6912, 7813, 8788, 9842, 10976, 12195, 13500, 14896, 16384, 17969, 19652, 21438, 23328, 25327, 27436, 29660, 32000, 34461, 37044
OFFSET
0,3
COMMENTS
a(n) is the number of compositions of even natural numbers into 3 parts < n. For example, a(2)=4 because compositions of even natural numbers into 3 parts < 2 are (0,0,0), (0,1,1), (1,0,1), and (1,1,0). a(3)=14 because compositions of even natural numbers into 3 parts <= 3 - 1 = 2 are (0,0,0), (0,1,1), (1,0,1), (1,1,0), (0,0,2), (0,2,0), (2,0,0), (1,1,2),(1,2,1),(2,1,1),(0,2,2),(2,0,2),(2,2,0) and (2,2,2). - Adi Dani, Jun 05 2011
Also the number of balls in a body-centered lattice cube with n layers. - K. G. Stier, Dec 26 2012
FORMULA
G.f.: x*(1+x+4*x^2) / ( (1+x)*(x-1)^4 ). - R. J. Mathar, Jun 06 2011
a(n) = (2*n^3 - (-1)^n + 1)/4. - Bruno Berselli, Jun 07 2011
a(n) = n^3 - A036487(n), where n^3 is the number of compositions of natural numbers into 3 parts < n. - R. J. Mathar, Jun 07 2011
a(n) = (n^3 + (n mod 2))/2. - Wesley Ivan Hurt, May 21 2014
E.g.f.: (x*(1 + 3*x + x^2)*cosh(x) + (1 + x + 3*x^2 + x^3)*sinh(x))/2. - Stefano Spezia, Sep 09 2022
MAPLE
[ seq(ceil((n^3)/2), n=0..100) ];
with (combinat):seq(count(Partition((n^3+1)), size=2), n=0..40); # Zerinvary Lajos, Mar 28 2008
MATHEMATICA
Table[Ceiling[n^3/2], {n, 0, 40}] (* Wesley Ivan Hurt, May 21 2014 *)
LinearRecurrence[{3, -2, -2, 3, -1}, {0, 1, 4, 14, 32}, 50] (* Harvey P. Dale, Jan 14 2019 *)
PROG
(Magma) [(2*n^3-(-1)^n+1)/4: n in [0..40]]; // Vincenzo Librandi, Jun 07 2011
(PARI) a(n)=(2*n^3-(-1)^n+1)/4 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. A036487.
Sequence in context: A129395 A023539 A159920 * A023627 A023649 A323723
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 1999
STATUS
approved