OFFSET
0,3
COMMENTS
a(n) is the number of compositions of even natural numbers into 3 parts < n. For example, a(2)=4 because compositions of even natural numbers into 3 parts < 2 are (0,0,0), (0,1,1), (1,0,1), and (1,1,0). a(3)=14 because compositions of even natural numbers into 3 parts <= 3 - 1 = 2 are (0,0,0), (0,1,1), (1,0,1), (1,1,0), (0,0,2), (0,2,0), (2,0,0), (1,1,2),(1,2,1),(2,1,1),(0,2,2),(2,0,2),(2,2,0) and (2,2,2). - Adi Dani, Jun 05 2011
Also the number of balls in a body-centered lattice cube with n layers. - K. G. Stier, Dec 26 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
FORMULA
G.f.: x*(1+x+4*x^2) / ( (1+x)*(x-1)^4 ). - R. J. Mathar, Jun 06 2011
a(n) = (2*n^3 - (-1)^n + 1)/4. - Bruno Berselli, Jun 07 2011
a(n) = n^3 - A036487(n), where n^3 is the number of compositions of natural numbers into 3 parts < n. - R. J. Mathar, Jun 07 2011
a(n) = (n^3 + (n mod 2))/2. - Wesley Ivan Hurt, May 21 2014
E.g.f.: (x*(1 + 3*x + x^2)*cosh(x) + (1 + x + 3*x^2 + x^3)*sinh(x))/2. - Stefano Spezia, Sep 09 2022
MAPLE
[ seq(ceil((n^3)/2), n=0..100) ];
with (combinat):seq(count(Partition((n^3+1)), size=2), n=0..40); # Zerinvary Lajos, Mar 28 2008
MATHEMATICA
Table[Ceiling[n^3/2], {n, 0, 40}] (* Wesley Ivan Hurt, May 21 2014 *)
LinearRecurrence[{3, -2, -2, 3, -1}, {0, 1, 4, 14, 32}, 50] (* Harvey P. Dale, Jan 14 2019 *)
PROG
(Magma) [(2*n^3-(-1)^n+1)/4: n in [0..40]]; // Vincenzo Librandi, Jun 07 2011
(PARI) a(n)=(2*n^3-(-1)^n+1)/4 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 1999
STATUS
approved