login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A250170 Number of length 5+1 0..n arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero 1
32, 373, 1880, 7109, 19896, 49037, 103556, 203615, 364900, 624811, 1006084, 1570791, 2347840, 3431579, 4856212, 6757417, 9171308, 12285541, 16134624, 20968689, 26816804, 34003157, 42544984, 52855367, 64932468, 79290519, 95903144 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Row 5 of A250167
LINKS
FORMULA
Empirical: a(n) = a(n-2) +a(n-3) +2*a(n-4) -a(n-6) -3*a(n-7) -3*a(n-8) -a(n-9) +3*a(n-11) +4*a(n-12) +3*a(n-13) -a(n-15) -3*a(n-16) -3*a(n-17) -a(n-18) +2*a(n-20) +a(n-21) +a(n-22) -a(n-24)
Empirical: also a polynomial of degree 5 plus a cubic quasipolynomial with period 60, the first 12 being:
Empirical for n mod 60 = 0: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (299/4)*n + 1
Empirical for n mod 60 = 1: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (223/64)*n + (457247/8640)
Empirical for n mod 60 = 2: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (2339/36)*n + (7721/270)
Empirical for n mod 60 = 3: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (703/64)*n + (7753/64)
Empirical for n mod 60 = 4: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (299/4)*n - (1141/135)
Empirical for n mod 60 = 5: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (7639/576)*n + (217043/1728)
Empirical for n mod 60 = 6: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (299/4)*n - (157/10)
Empirical for n mod 60 = 7: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (703/64)*n + (893567/8640)
Empirical for n mod 60 = 8: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (2339/36)*n + (1223/27)
Empirical for n mod 60 = 9: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (223/64)*n + (24653/320)
Empirical for n mod 60 = 10: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (299/4)*n - (1531/54)
Empirical for n mod 60 = 11: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (11959/576)*n + (1493887/8640)
EXAMPLE
Some solutions for n=6
..6....3....3....3....4....6....4....3....5....1....6....4....1....0....6....3
..3....1....0....1....6....4....3....3....1....5....6....3....4....0....4....5
..1....6....2....2....5....6....0....2....2....5....4....3....5....3....1....1
..0....2....4....4....0....0....3....4....3....4....0....2....3....1....2....1
..5....1....1....6....2....0....5....2....1....3....4....1....4....2....6....1
..6....1....5....3....2....6....6....3....1....5....6....2....3....0....6....3
CROSSREFS
Sequence in context: A191489 A055752 A362234 * A125420 A163690 A268999
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 13 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 01:34 EDT 2024. Contains 371887 sequences. (Running on oeis4.)