login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191487
The row sums of the Sierpinski-Stern triangle A191372.
3
0, 1, 3, 8, 9, 22, 24, 26, 27, 62, 66, 70, 72, 76, 78, 80, 81, 178, 186, 194, 198, 206, 210, 214, 216, 224, 228, 232, 234, 238, 240, 242, 243, 518, 534, 550, 558, 574, 582, 590, 594, 610, 618, 626, 630, 638, 642, 646
OFFSET
0,3
COMMENTS
The row sums a(n) of the Sierpinski-Stern triangle A191372 equal this sequence.
The differences diff1(n) = a(2*n+3) - a(2*n+1) and diff2(n) = (a(2*n+2) - a(2*n))/3, give rise to patterns that lead to Gould’s sequence A001316, see the examples.
The diff1(n) sequence as a triangle leads to Gould’s sequence in a peculiar way, see A191488. The leading terms of the diff1(n) rows are given by A001550(p+1), p>=1; for p=0 the leading term is 7. The rows sums of diff1(n) as a triangle equal A025192(p+2), p>=1; for p = 0 the row sum is 7. The row sums of diff1(n) as a triangle minus the first term equal 2*A053152(p+1).
The diff2(n) sequence as a triangle leads to Gould’s sequence A001316 in a simple way; just delete the first term and reverse the order of the rest of the terms; more terms require a higher row number. The leading terms of the diff2(n) rows are given by A085281(p), p>=0. The row sums of diff2(n) as a triangle equal A025192(p) and the row sums minus the first term equal A001047(p-1), p>=1; for p=0 the row sum minus the first term is 0.
FORMULA
a(2*n) = 3*a(n)
diff(n) = a(n+1) - a(n), diff1(n) = a(2*n+3) - a(2*n+1), diff2(n) = (a(2*n+2) - a(2*n))/3
a(2^n+1) - a(2^n) = A085281(n+1) = A007689(n) for n>=0
a(2^(n+1)+1) - a(2^(n+1)-1) = A001550(n+1) for n>=1.
EXAMPLE
The first few rows of diff1(n) as a triangle, row lengths A000079(p) with p>=0, are:
[7]
[14, 4]
[36, 8, 6, 4]
[98, 16, 12, 8, 10, 8, 6, 4]
[276, 32, 24, 16, 20, 16, 12, 8, 18, 16, 12, 8, 10, 8, 6, 4]
[794, 64, 48, 32, 40, 32, 24, 16, 36, 32, 24, 16, 20, 16, 12, 8, 34, 32, 24, 16, 20, 16, 12, 8, 18, 16, 12, 8, 10, 8, 6, 4]
The first few rows of diff2(n) as a triangle, row lengths A011782(p) with p>=0, are:
[1]
[2]
[5, 1]
[13, 2, 2, 1]
[35, 4, 4, 2, 4, 2, 2, 1]
[97, 8, 8, 4, 8, 4, 4, 2, 8, 4, 4, 2, 4, 2, 2, 1]
[275, 16, 16, 8, 16, 8, 8, 4, 16, 8, 8, 4, 8, 4, 4, 2, 16, 8, 8, 4, 8, 4, 4, 2, 8, 4, 4, 2, 4, 2, 2, 1]
MAPLE
Add the following lines to the Maple program of A191372.
A191487(0):=0: for d from 1 to 2^pmax do A191487(d):= 0: for Tx from 0 to 2^ceil(log(d)/ log(2))-1 do A191487(d):=A191487(d)+S2(Tx, d) od: od: seq(A191487(d), d=0..2^pmax);
KEYWORD
nonn
AUTHOR
Johannes W. Meijer, Jun 05 2011
STATUS
approved