login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167344
Totally multiplicative sequence with a(p) = (p-1)*(p+1) = p^2-1 for prime p.
5
1, 3, 8, 9, 24, 24, 48, 27, 64, 72, 120, 72, 168, 144, 192, 81, 288, 192, 360, 216, 384, 360, 528, 216, 576, 504, 512, 432, 840, 576, 960, 243, 960, 864, 1152, 576, 1368, 1080, 1344, 648, 1680, 1152, 1848, 1080, 1536, 1584, 2208, 648, 2304, 1728
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = ((p-1)*(p+1))^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)-1)*(p(k)+1))^e(k).
a(n) = A003958(n) * A003959(n).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 - 2)) = 1.884261780923861906728291280746835210118330549695678826316037127832097567... - Vaclav Kotesovec, Sep 20 2020
a(n) = A340323(n) * A340368(n). - Antti Karttunen, Jan 31 2021
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} (1 - 1/(p^3 - p^2 + 1)) = 0.2487962948... . - Amiram Eldar, Nov 12 2022
MATHEMATICA
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 1)^fi[[All, 2]])); b[1] = 1; b[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 1)^fi[[All, 2]])); Table[a[n]*b[n], {n, 1, 100}] (* G. C. Greubel, Jun 10 2016 *)
PROG
(PARI) a(n) = my(f=factor(n)); for (k=1, #f~, f[k, 1] = f[k, 1]^2-1); factorback(f); \\ Michel Marcus, Jan 31 2021
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Jaroslav Krizek, Nov 01 2009
STATUS
approved