login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A223331
T(n,k)=Rolling cube footprints: number of nXk 0..7 arrays starting with 0 where 0..7 label vertices of a cube and every array movement to a horizontal or antidiagonal neighbor moves along a corresponding cube edge
10
1, 3, 8, 9, 27, 64, 27, 189, 243, 512, 81, 1323, 3969, 2187, 4096, 243, 9261, 64827, 83349, 19683, 32768, 729, 64827, 1059723, 3176523, 1750329, 177147, 262144, 2187, 453789, 17324685, 121264857, 155649627, 36756909, 1594323, 2097152, 6561
OFFSET
1,2
COMMENTS
Table starts
.........1..........3.............9................27....................81
.........8.........27...........189..............1323..................9261
........64........243..........3969.............64827...............1059723
.......512.......2187.........83349...........3176523.............121264857
......4096......19683.......1750329.........155649627...........13876429707
.....32768.....177147......36756909........7626831723.........1587890407761
....262144....1594323.....771895089......373714754427.......181703507374179
...2097152...14348907...16209796869....18312022966923.....20792470582897209
..16777216..129140163..340405734249...897289125379227...2379298227030964827
.134217728.1162261467.7148520419229.43967167143582123.272264906211251105313
Horizontal or vertical instead of horizontal or antidiagonal gives A222444
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 8*a(n-1)
k=2: a(n) = 9*a(n-1)
k=3: a(n) = 21*a(n-1)
k=4: a(n) = 49*a(n-1)
k=5: a(n) = 117*a(n-1) -294*a(n-2)
k=6: a(n) = 282*a(n-1) -3969*a(n-2) +9604*a(n-3)
k=7: a(n) = 692*a(n-1) -43569*a(n-2) +847042*a(n-3) -6303164*a(n-4) +15731352*a(n-5)
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 7*a(n-1) for n>2
n=3: a(n) = 18*a(n-1) -27*a(n-2) for n>4
n=4: a(n) = 48*a(n-1) -402*a(n-2) +1064*a(n-3) -789*a(n-4) for n>7
n=5: [order 9] for n>13
n=6: [order 20] for n>25
n=7: [order 51] for n>57
EXAMPLE
Some solutions for n=3 k=4
..0..4..5..1....0..4..0..1....0..4..6..4....0..2..0..4....0..4..6..4
..5..4..0..1....5..1..5..1....0..2..0..2....6..2..6..4....6..2..6..7
..6..2..3..1....5..7..3..2....3..2..3..1....6..4..0..4....0..2..6..7
Vertex neighbors:
0 -> 1 2 4
1 -> 0 3 5
2 -> 0 3 6
3 -> 1 2 7
4 -> 0 5 6
5 -> 1 4 7
6 -> 2 4 7
7 -> 3 5 6
CROSSREFS
Column 1 is A001018(n-1)
Column 2 is A013708(n-1)
Column 3 is 9*21^(n-1)
Column 4 is 27*49^(n-1)
Row 1 is A000244(n-1)
Row 2 is 27*7^(n-2) for n>1
Sequence in context: A167344 A025615 A297324 * A101720 A093439 A000927
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 19 2013
STATUS
approved