login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175113
a(n) = ((2*n + 1)^6 + 1)/2.
4
1, 365, 7813, 58825, 265721, 885781, 2413405, 5695313, 12068785, 23522941, 42883061, 74017945, 122070313, 193710245, 297411661, 443751841, 645733985, 919132813, 1282863205, 1759371881, 2375052121, 3160681525, 4151882813
OFFSET
0,2
COMMENTS
Convolution of the finite sequence 1, 358, 5279, 11764, 5279, 358, 1 with A000579. Partial sums of A175114.
Subsequence of A001844 because a(n)=(A050492(n+1)-1)^2+A050492(n+1)^2. - Bruno Berselli, Dec 28 2010
a(n) is also the first integer in a sum of (2*n + 1)^6 consecutive integers that equals (2*n + 1)^12. - Patrick J. McNab, Dec 26 2016
LINKS
FORMULA
a(n)= 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7).
G.f.: (1+358*x+5279*x^2+11764*x^3+5279*x^4+358*x^5+x^6)/(1-x)^7.
a(n) = (2*n^2+2*n+1)*(16*n^4+32*n^3+20*n^2+4*n+1). - Bruno Berselli, Dec 27 2010
MATHEMATICA
CoefficientList[Series[(1 + 358*x + 5279*x^2 + 11764*x^3 + 5279*x^4 + 358*x^5 + x^6)/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 20 2012 *)
PROG
(Magma) I:=[1, 365, 7813, 58825, 265721, 885781, 2413405]; [n le 7 select I[n] else 7*Self(n-1) - 21*Self(n-2) + 35*Self(n-3) - 35*Self(n-4) + 21*Self(n-5) - 7*Self(n-6) + Self(n-7): n in [1..40]]; // Vincenzo Librandi, Dec 20 2012
CROSSREFS
Sequence in context: A275182 A275130 A274727 * A222992 A276253 A233116
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Feb 13 2010
STATUS
approved