login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175111
a(n) = ((2*n+1)^5+(-1)^n)/2.
2
1, 121, 1563, 8403, 29525, 80525, 185647, 379687, 709929, 1238049, 2042051, 3218171, 4882813, 7174453, 10255575, 14314575, 19567697, 26260937, 34671979, 45112099, 57928101, 73504221, 92264063, 114672503, 141237625, 172512625
OFFSET
0,2
COMMENTS
Partial sums of A175112.
Convolution of the finite sequence 1,116,967,1672,967,116,1 with A001753.
FORMULA
a(n) = 5*a(n-1) -9*a(n-2) +5*a(n-3) +5*a(n-4) -9*a(n-5) +5*a(n-6) -a(n-7).
G.f: (1+116*x+967*x^2+1672*x^3+967*x^4+116*x^5+x^6)/((1+x)*(x-1)^6).
MATHEMATICA
CoefficientList[Series[(1 + 116*x + 967*x^2 + 1672*x^3 + 967*x^4 + 116*x^5 + x^6)/((1 + x)*(x - 1)^6), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
LinearRecurrence[{5, -9, 5, 5, -9, 5, -1}, {1, 121, 1563, 8403, 29525, 80525, 185647}, 50] (* Harvey P. Dale, May 30 2014 *)
PROG
(Magma) I:=[1, 121, 1563, 8403, 29525, 80525, 185647]; [n le 7 select I[n] else 5*Self(n-1) - 9*Self(n-2) + 5*Self(n-3) + 5*Self(n-4) - 9*Self(n-5) + 5*Self(n-6) - Self(n-7): n in [1..40]]; // Vincenzo Librandi, Dec 19 2012
CROSSREFS
Sequence in context: A066444 A206466 A137434 * A375917 A115190 A231706
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Feb 13 2010
STATUS
approved