login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175109
a(n) = ((2*n+1)^3+(-1)^n)/2.
2
1, 13, 63, 171, 365, 665, 1099, 1687, 2457, 3429, 4631, 6083, 7813, 9841, 12195, 14895, 17969, 21437, 25327, 29659, 34461, 39753, 45563, 51911, 58825, 66325, 74439, 83187, 92597, 102689, 113491, 125023, 137313, 150381, 164255, 178955
OFFSET
0,2
COMMENTS
Partial sums of A110907. Convolution of the finite sequence (1,10,26,10,1) with A002623.
FORMULA
a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5).
G.f.: (x^2+4*x+1)*(x^2+6*x+1)/((1+x)*(x-1)^4).
MAPLE
A175109:=n->((2*n+1)^3+(-1)^n)/2: seq(A175109(n), n=0..50); # Wesley Ivan Hurt, Apr 18 2017
MATHEMATICA
CoefficientList[Series[(x^2 + 4*x + 1)*(x^2 + 6*x + 1)/((1 + x)*(x - 1)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
PROG
(Magma) I:=[1, 13, 63, 171, 365]; [n le 5 select I[n] else 3*Self(n-1) - 2*Self(n-2) - 2*Self(n-3) + 3*Self(n-4) - Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 19 2012
CROSSREFS
Sequence in context: A213843 A031074 A285482 * A265038 A051878 A092653
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Feb 13 2010
STATUS
approved