OFFSET
0,2
COMMENTS
This lattice consists of all points (x,y,z) where x,y,z are integers with an even sum.
The L_infinity norm of a vector is the largest component in absolute value.
The sequence for the D_k lattice has the terms ((2*n+1)^k-(2*n-1)^k)/2, if k is even, and the terms ((2n+1)^k-(2*n-1)^k)/2+(-1)^n if k is odd (like here for k=3). The sequence for A_2 is A008458, for A_3 A010006, for A_4 the first differences of A083669. A_5 is 2+2*n^2*(25+44*n^2) if n>0, and 1 if n=0. - R. J. Mathar, Feb 09 2010
REFERENCES
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, Chap. 4.
LINKS
R. J. Mathar, Point counts of D_k and some A_k and E_k integer lattices inside hypercubes arXiv:1002.3844 [math.GT], 2010.
G. Nebe and N. J. A. Sloane, Home page for this lattice
Index entries for linear recurrences with constant coefficients, signature (2, 0, -2, 1).
FORMULA
From R. J. Mathar, Feb 03 2010: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n>4.
a(n) = 1 + (-1)^n + 12*n^2, n>0.
G.f.: 1 - 2*x*(6 + 13*x + 4*x^2 + x^3)/((1+x)*(x-1)^3). (End)
EXAMPLE
a(0) = 1: 000
a(1) = 12: +-1 +-1 0, where the 0 can be in any of the three coordinates
a(2) = 50: +-2 0 0 (6), +-2 +-1 +-1 (24), +-2 +-2 0 (12), +-2 +-2 +-2 (8).
MAPLE
A110907 := proc(n) a :=0 ; for x from -n to n do for y from -n to n do for z from -n to n do if type(x+y+z, 'even') then m := max( abs(x), abs(y), abs(z)) ; if m = n then a := a+1 ; end if; end if; end do ; end do ; end do ; a ; end proc: seq(A110907(n), n=0..40) ; # R. J. Mathar, Feb 03 2010
MATHEMATICA
a[0] = 1; a[n_] := 1 + (-1)^n + 12*n^2;
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 16 2017, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 15 2008
EXTENSIONS
I would like to get analogous sequences for A_2, A_4, A_5, ..., D_4 (see A117216), D_5, ..., E_6, E_7, E_8.
Extended by R. J. Mathar, Feb 03 2010
Removed the "conjectured" attribute from formulas - R. J. Mathar, Feb 27 2010
STATUS
approved