The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110906 Expansion of (1 +34*x +121*x^2)/((1-x)*(x^2 -14*x +1)). 1
 1, 49, 841, 11881, 165649, 2307361, 32137561, 447618649, 6234523681, 86835713041, 1209465459049, 16845680713801, 234630064534321, 3267975222766849, 45517023054201721, 633970347536057401 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A floretion-generated sequence of squares. LINKS G. C. Greubel, Table of n, a(n) for n = 0..870 Index entries for linear recurrences with constant coefficients, signature (15,-15,1). FORMULA a(n) = -13 + 14*A007655(n+2) - 134*A007655(n+1). - R. J. Mathar, Nov 10 2009 From Colin Barker, May 06 2019: (Start) a(n) = -13 + (7-4*sqrt(3))^n*(7+(3*sqrt(3))/2) + (7-(3*sqrt(3))/2)*(7+4*sqrt(3))^n. a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3) for n>2. (End) MATHEMATICA CoefficientList[Series[(1 + 34*x + 121*x^2)/((1 - x)*(x^2 - 14*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 19 2017 *) PROG Floretion Algebra Multiplication Program, FAMP Code: 1vescycseq[C*B] with C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' B = - 'i + 'j - i' + j' - 'kk' - 'ik' - 'jk' - 'ki' - 'kj' (PARI) x='x+O('x^50); Vec((1 +34*x +121*x^2)/((1-x)*(x^2 -14*x +1))) \\ G. C. Greubel, Oct 19 2017 CROSSREFS Sequence in context: A289992 A357653 A278284 * A193940 A012115 A284642 Adjacent sequences: A110903 A110904 A110905 * A110907 A110908 A110909 KEYWORD easy,nonn AUTHOR Creighton Dement, Sep 21 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 11:04 EST 2023. Contains 367517 sequences. (Running on oeis4.)