login
A051878
Partial sums of A051797.
4
1, 13, 63, 203, 518, 1134, 2226, 4026, 6831, 11011, 17017, 25389, 36764, 51884, 71604, 96900, 128877, 168777, 217987, 278047, 350658, 437690, 541190, 663390, 806715, 973791, 1167453, 1390753, 1646968, 1939608, 2272424, 2649416, 3074841, 3553221, 4089351, 4688307, 5355454, 6096454
OFFSET
0,2
COMMENTS
Convolution of triangular numbers (A000217) and decagonal numbers (A001107). [Bruno Berselli, Jul 21 2015]
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-16.
FORMULA
a(n) = binomial(n+4, 4)*(8*n+5)/5.
G.f.: (1+7*x)/(1-x)^6.
E.g.f.: (120 +*1440*x +2280*x^2 +1040*x^3 +165*x^4 +8*x^5)*exp(x)/120. - G. C. Greubel, Aug 30 2019
MAPLE
seq((8*n+5)*binomial(n+4, 4)/5, n=0..40); # G. C. Greubel, Aug 30 2019
MATHEMATICA
Table[(8*n+5)*Binomial[n+4, 4]/5, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011, modified by G. C. Greubel, Aug 30 2019 *)
PROG
(PARI) vector(40, n, (8*n-3)*binomial(n+3, 4)/5) \\ G. C. Greubel, Aug 30 2019
(Magma) [(8*n+5)*Binomial(n+4, 4)/5: n in [0..40]]; // G. C. Greubel, Aug 30 2019
(Sage) [(8*n+5)*binomial(n+4, 4)/5 for n in (0..30)] # G. C. Greubel, Aug 30 2019
(GAP) List([0..40], n-> (8*n+5)*Binomial(n+4, 4)/5); # G. C. Greubel, Aug 30 2019
CROSSREFS
Cf. A093565 ((8, 1) Pascal, column m=5).
Sequence in context: A285482 A175109 A265038 * A092653 A067465 A166605
KEYWORD
nonn,easy
AUTHOR
Barry E. Williams, Dec 14 1999
EXTENSIONS
Terms a(28) onward added by G. C. Greubel, Aug 30 2019
STATUS
approved