login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265892
Array read by ascending antidiagonals: A(n,k) = A265893(A265609(n,k)), with n as row >= 0, k as column >= 0; the number of significant digits counted without trailing zeros in the factorial base representation of rising factorial n^(k) = (n+k-1)!/(n-1)!.
4
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 2, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 3, 2, 3, 2, 2, 1, 1, 0, 1, 2, 3, 2, 2, 3, 1, 1, 1, 0, 1, 3, 1, 2, 3, 1, 2, 2, 1, 1, 0, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 0, 1, 3, 3, 4, 2, 2, 2, 3, 3, 2, 1, 1, 0, 1, 1, 3, 2, 3, 3, 3, 2, 2, 1, 1, 1, 1, 0, 1, 3, 3, 4, 3, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0
OFFSET
0,12
COMMENTS
Square array A(row,col) is read by ascending antidiagonals as: A(0,0), A(1,0), A(0,1), A(2,0), A(1,1), A(0,2), A(3,0), A(2,1), A(1,2), A(0,3), ...
FORMULA
A(n,k) = A265893(A265609(n,k)).
EXAMPLE
The top left corner of the array A265609 with its terms shown in factorial base (A007623) looks like this:
1, 0, 0, 0, 0, 0, 0, 0, 0
1, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000
1, 11, 200, 2200, 30000, 330000, 4000000, 44000000, 500000000
1, 20, 310, 10000, 110000, 1220000, 14000000, 160000000, 1830000000
1, 21, 1100, 13300, 220000, 3000000, 36000000, 452000000, 5500000000
1, 100, 1300, 24000, 411000, 6000000, 82000000, 1100000000, 13300000000
1, 101, 2110, 41000, 1000000, 13000000, 174000000, 2374000000, 30360000000
-
Counting such digits for each term, but without the trailing zeros gives us the top left corner of this array:
-
The top left corner of the array:
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1
1, 1, 2, 1, 2, 3, 2, 2, 3, 1, 2, 3, 2, 2, 3, 1, 2, 3, 2, 2, 3, 1, 2, 3, 2
1, 2, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 1, 2, 3, 4, 3
1, 1, 2, 2, 3, 1, 2, 2, 3, 4, 3, 1, 2, 3, 4, 2, 3, 2, 3, 4, 1, 2, 3, 3, 4
1, 3, 3, 2, 1, 2, 3, 4, 4, 4, 3, 4, 2, 3, 3, 4, 3, 4, 3, 3, 4, 2, 4, 5, 4
1, 2, 1, 1, 2, 3, 4, 3, 3, 2, 3, 2, 4, 5, 4, 3, 4, 3, 3, 4, 5, 3, 4, 3, 4
1, 3, 2, 4, 3, 4, 3, 4, 2, 3, 4, 5, 4, 3, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 3
1, 2, 3, 2, 3, 4, 3, 4, 5, 3, 4, 5, 3, 4, 5, 3, 4, 5, 5, 4, 5, 4, 5, 3, 4
1, 3, 3, 4, 4, 4, 3, 4, 4, 5, 4, 3, 3, 5, 6, 6, 5, 6, 5, 6, 5, 6, 4, 5, 6
1, 1, 3, 3, 3, 2, 3, 3, 4, 4, 5, 3, 4, 5, 5, 4, 5, 4, 5, 4, 5, 6, 4, 5, 4
1, 3, 4, 4, 4, 5, 4, 5, 5, 5, 5, 6, 4, 5, 6, 6, 5, 6, 5, 7, 6, 5, 5, 5, 5
1, 2, 3, 2, 4, 3, 4, 4, 4, 4, 5, 5, 6, 5, 5, 4, 6, 5, 6, 5, 4, 4, 4, 5, 6
1, 3, 1, 2, 3, 4, 5, 4, 3, 4, 4, 5, 5, 7, 6, 7, 6, 7, 5, 6, 7, 5, 4, 5, 6
1, 2, 4, 3, 5, 4, 3, 5, 6, 6, 5, 6, 6, 5, 6, 5, 6, 4, 5, 6, 4, 4, 6, 7, 8
1, 3, 3, 5, 4, 5, 5, 6, 5, 6, 5, 7, 6, 7, 6, 7, 4, 5, 6, 8, 5, 6, 7, 8, 6
1, 1, 3, 3, 4, 3, 5, 4, 5, 4, 6, 5, 6, 5, 6, 6, 7, 6, 7, 4, 5, 6, 7, 5, 6
...
PROG
(Scheme)
(define (A265892 n) (A265892bi (A025581 n) (A002262 n)))
(define (A265892bi row col) (A265893 (A265609bi row col)))
CROSSREFS
Row 0: A000007, rows 1-2: A000012, row 3: A000034 (see comment in A001710).
Column 0: A000012, column 1: A265893.
Cf. also array A265890.
Sequence in context: A085737 A364249 A191904 * A324966 A005090 A073490
KEYWORD
nonn,tabl,base
AUTHOR
Antti Karttunen, Dec 20 2015
STATUS
approved