login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265609
Array read by ascending antidiagonals: A(n,k) the rising factorial, also known as Pochhammer symbol, for n >= 0 and k >= 0.
16
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 6, 0, 1, 4, 12, 24, 24, 0, 1, 5, 20, 60, 120, 120, 0, 1, 6, 30, 120, 360, 720, 720, 0, 1, 7, 42, 210, 840, 2520, 5040, 5040, 0, 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 0
OFFSET
0,8
COMMENTS
The Pochhammer function is defined P(x,n) = x*(x+1)*...*(x+n-1). By convention P(0,0) = 1.
From Antti Karttunen, Dec 19 2015: (Start)
Apart from the initial row of zeros, if we discard the leftmost column and divide the rest of terms A(n,k) with (n+k) [where k is now the once-decremented column index of the new, shifted position] we get the same array back. See the given recursive formula.
When the numbers in array are viewed in factorial base (A007623), certain repeating patterns can be discerned, at least in a few of the topmost rows. See comment in A001710 and arrays A265890, A265892. (End)
A(n,k) is the k-th moment (about 0) of a gamma (Erlang) distribution with shape parameter n and rate parameter 1. - Geoffrey Critzer, Dec 24 2018
REFERENCES
Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, Addison-Wesley, 1994.
H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 355.
FORMULA
A(n,k) = Gamma(n+k)/Gamma(n) for n > 0 and n^k for n=0.
A(n,k) = Sum_{j=0..k} n^j*S1(k,j), S1(n,k) the Stirling cycle numbers A132393(n,k).
A(n,k) = (k-1)!/(Sum_{j=0..k-1} (-1)^j*binomial(k-1, j)/(j+n)) for n >= 1, k >= 1.
A(n,k) = (n+k-1)*A(n,k-1) for k >= 1, A(n,0) = 1. - Antti Karttunen, Dec 19 2015
E.g.f. for row k: 1/(1-x)^k. - Geoffrey Critzer, Dec 24 2018
A(n, k) = FallingFactorial(n + k - 1, k). - Peter Luschny, Mar 22 2022
G.f. for row n as a continued fraction of Stieltjes type: 1/(1 - n*x/(1 - x/(1 - (n+1)*x/(1 - 2*x/(1 - (n+2)*x/(1 - 3*x/(1 - ... ))))))). See Wall, Chapter XVIII, equation 92.5. Cf. A226513. - Peter Bala, Aug 27 2023
EXAMPLE
Square array A(n,k) [where n=row, k=column] is read by ascending antidiagonals as:
A(0,0), A(1,0), A(0,1), A(2,0), A(1,1), A(0,2), A(3,0), A(2,1), A(1,2), A(0,3), ...
Array starts:
n\k [0 1 2 3 4 5 6 7 8]
--------------------------------------------------------------
[0] [1, 0, 0, 0, 0, 0, 0, 0, 0]
[1] [1, 1, 2, 6, 24, 120, 720, 5040, 40320]
[2] [1, 2, 6, 24, 120, 720, 5040, 40320, 362880]
[3] [1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400]
[4] [1, 4, 20, 120, 840, 6720, 60480, 604800, 6652800]
[5] [1, 5, 30, 210, 1680, 15120, 151200, 1663200, 19958400]
[6] [1, 6, 42, 336, 3024, 30240, 332640, 3991680, 51891840]
[7] [1, 7, 56, 504, 5040, 55440, 665280, 8648640, 121080960]
[8] [1, 8, 72, 720, 7920, 95040, 1235520, 17297280, 259459200]
.
Seen as a triangle, T(n, k) = Pochhammer(n - k, k), the first few rows are:
[0] 1;
[1] 1, 0;
[2] 1, 1, 0;
[3] 1, 2, 2, 0;
[4] 1, 3, 6, 6, 0;
[5] 1, 4, 12, 24, 24, 0;
[6] 1, 5, 20, 60, 120, 120, 0;
[7] 1, 6, 30, 120, 360, 720, 720, 0;
[8] 1, 7, 42, 210, 840, 2520, 5040, 5040, 0;
[9] 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 0.
MAPLE
for n from 0 to 8 do seq(pochhammer(n, k), k=0..8) od;
MATHEMATICA
Table[Pochhammer[n, k], {n, 0, 8}, {k, 0, 8}]
PROG
(Sage)
for n in (0..8): print([rising_factorial(n, k) for k in (0..8)])
(Scheme)
(define (A265609 n) (A265609bi (A025581 n) (A002262 n)))
(define (A265609bi row col) (if (zero? col) 1 (* (+ row col -1) (A265609bi row (- col 1)))))
;; Antti Karttunen, Dec 19 2015
CROSSREFS
Triangle giving terms only up to column k=n: A124320.
Row 0: A000007, row 1: A000142, row 3: A001710 (from k=1 onward, shifted two terms left).
Column 0: A000012, column 1: A001477, column 2: A002378, columns 3-7: A007531, A052762, A052787, A053625, A159083 (shifted 2 .. 6 terms left respectively, i.e. without the extra initial zeros), column 8: A239035.
Row sums of the triangle: A000522.
A(n, n) = A000407(n-1) for n>0.
2^n*A(1/2,n) = A001147(n).
Cf. also A007623, A008279 (falling factorial), A173333, A257505, A265890, A265892.
Sequence in context: A361432 A294498 A292860 * A362125 A261718 A144074
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Dec 19 2015
STATUS
approved