OFFSET
0,8
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
FORMULA
A(n,k) = Sum_{i=0..k} C(k,i) * A261719(n,k-i).
EXAMPLE
A(3,2) = 18: 3aaa, 3aab, 3abb, 3bbb, 2aa1a, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 2bb1b, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a, 1b1b1b.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 2, 7, 15, 26, 40, 57, 77, ...
0, 3, 18, 55, 124, 235, 398, 623, ...
0, 5, 50, 216, 631, 1470, 2955, 5355, ...
0, 7, 118, 729, 2780, 8001, 19158, 40299, ...
0, 11, 301, 2621, 12954, 45865, 130453, 317905, ...
0, 15, 684, 8535, 55196, 241870, 820554, 2323483, ...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1))))
end:
A:= (n, k)-> b(n, n, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k]*Binomial[i + k - 1, k - 1]]]]; A[n_, k_] := b[n, n, k]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 29 2015
STATUS
approved