OFFSET
1,3
COMMENTS
Generating polygons for the sequences are: Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, ... .
n-th row sequence is the binomial transform of the fourth row of Pascal's triangle (1,n) followed by zeros; and the fourth partial sum of (1, n, n, n, ...).
n-th row sequence is the binomial transform of:
((n-1) * (0, 1, 3, 3, 1, 0, 0, 0) + (1, 4, 6, 4, 1, 0, 0, 0)).
Given the n-th row of the array (1, b, c, d, ...), the next row of the array is (1, b, c, d, ...) + (0, 1, 5, 15, 35, ...)
REFERENCES
Albert H. Beiler, "Recreations in the Theory of Numbers"; Dover, 1966, p. 195 (Table 80).
LINKS
FORMULA
G.f. for row n: (1 + (n-1)*x)/(1 - x)^5.
A(n,k) = C(k+3,3) + n * C(k+3,4) = A080852(n,k).
E.g.f. as array: exp(y)*(exp(x)*(24 + 24*(3 + x)*y + 36*(1 + x)*y^2 + 4*(1 + 3*x)*y^3 + x*y^4) - 4*(6 + 18*y + 9*y^2 + y^3))/24. - Stefano Spezia, Aug 15 2024
EXAMPLE
The array as shown in A257200:
1, 5, 15, 35, 70, 126, 210, 330, ... A000332
1, 6, 20, 50, 105, 196, 336, 540, ... A002415
1, 7, 25, 65, 140, 266, 462, 750, ... A001296
1, 8, 30, 80, 175, 336, 588, 960, ... A002417
1, 9, 35, 95, 210, 406, 714, 1170, ... A002418
1, 10, 40, 110, 245, 476, 840, 1380, ... A002419
...
(1, 7, 25, 65, 140, ...) is the third row of the array and is the binomial transform of the fourth row of Pascal's triangle (1,3) followed by zeros: (1, 6, 12, 10, 3, 0, 0, 0, ...); and the fourth partial sum of (1, 3, 3, 3, 0, 0, 0).
(1, 7, 25, 65, 140, ...) is the third row of the array and is the binomial transform of: ((2 * (0, 1, 3, 3, 1, 0, 0, 0, ...) + (1, 4, 6, 4, 1, 0, 0, 0, ...)); that is, the binomial transform of (1, 6, 12, 10, 3, 0, 0, 0, ...).
Row 2 of the array is (1, 5, 15, 35, 70, ...) + (0, 1, 5, 15, 35, ...), = (1, 6, 20, 50, 105, ...).
MAPLE
A:= (n, k)-> binomial(k+3, 3) + n*binomial(k+3, 4):
seq(seq(A(d-k, k), k=0..d-1), d=1..13); # Alois P. Heinz, Aug 31 2015
MATHEMATICA
row[1] = LinearRecurrence[{5, -10, 10, -5, 1}, {1, 5, 15, 35, 70}, m = 10];
row1 = Join[{0}, row[1] // Most]; row[n_] := row[n] = row[n-1] + row1;
Table[row[n-k+1][[k]], {n, 1, m}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 26 2016 *)
PROG
(PARI) A(n, k) = binomial(k+3, 3) + n*binomial(k+3, 4)
table(n, k) = for(x=1, n, for(y=0, k-1, print1(A(x, y), ", ")); print(""))
/* Print initial 6 rows and 8 columns as follows: */
table(6, 8) \\ Felix Fröhlich, Jul 28 2016
KEYWORD
AUTHOR
Gary W. Adamson, Aug 30 2015
STATUS
approved