|
|
A002418
|
|
4-dimensional figurate numbers: a(n) = (5*n-1)*binomial(n+2,3)/4.
(Formerly M4617 N1970)
|
|
18
|
|
|
0, 1, 9, 35, 95, 210, 406, 714, 1170, 1815, 2695, 3861, 5369, 7280, 9660, 12580, 16116, 20349, 25365, 31255, 38115, 46046, 55154, 65550, 77350, 90675, 105651, 122409, 141085, 161820, 184760, 210056, 237864, 268345, 301665, 337995
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Partial sums of A002413.
Principal diagonal of the convolution array A213550, for n>0. - Clark Kimberling, Jun 17 2012
Convolution of A000027 with A000566. - Bruno Berselli, Dec 06 2012
Coefficients in the hypergeometric series identity 1 - 9*(x - 1)/(4*x + 1) + 35*(x - 1)*(x - 2)/((4*x + 1)*(4*x + 2)) - 95*(x - 1)*(x - 2)*(x - 3)/((4*x + 1)*(4*x + 2)*(4*x + 3)) + ... = 0, valid for Re(x) > 1. Cf. A000326 and A002412. Column 4 of A103450. - Peter Bala, Mar 14 2019
|
|
REFERENCES
|
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Luis Verde-Star A Matrix Approach to Generalized Delannoy and Schröder Arrays, J. Int. Seq., Vol. 24 (2021), Article 21.4.1.
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5, 1).
Index to sequences related to pyramidal numbers.
|
|
FORMULA
|
G.f.: x*(1+4*x)/(1-x)^5. - Simon Plouffe in his 1992 dissertation.
Starting (1, 9, 35, 95, ...), = A128064 * A000332, (A000332 starting 1, 5, 15, 35, 70, ...), such that a(n) = n*C((n+3),4)) - (n-1)*C((n+2),4)). E.g., a(5) = 210 = 5*C(8,4) - 4*C(7,4) = 5*70 - 4*35. - Gary W. Adamson, Dec 28 2007
Unit digit, A010879(a(n)), is one of {0,1,9,5,6,4} [Eric Desbiaux] because a(n) mod 5 = 0,1,4,0,0, periodic with period 5. [Proof: A002413(n) mod 5 = 1,3,1,0,0 with period 5 and a(n) are the partial sums of A002413.] - R. J. Mathar, Mar 19 2008
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Oct 16 2012
a(n) = A080852(5,n-1). - R. J. Mathar, Jul 28 2016
a(n) = Sum_{i=0..n} (n-i) * Sum_{j=i..n} j. - J. M. Bergot, May 30 2017
E.g.f.: x*(24 + 84*x + 44*x^2 + 5*x^3)*exp(x)/4!. - G. C. Greubel, Jul 03 2019
Sum_{n>=1} 1/a(n) = (50*sqrt(5)*log(phi) + 125*log(5) - 50*sqrt(1+2/sqrt(5))*Pi - 26)/11, where phi is the golden ratio (A001622). - Amiram Eldar, Feb 11 2022
|
|
MATHEMATICA
|
Table[(5n-1) Binomial[n+2, 3]/4, {n, 0, 40}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {0, 1, 9, 35, 95}, 40] (* Harvey P. Dale, Oct 16 2012 *)
CoefficientList[Series[x*(1 + 4*x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 17 2012 *)
|
|
PROG
|
(Magma) [(5*n - 1)*Binomial(n + 2, 3)/4: n in [0..40]]; // Vincenzo Librandi, Oct 17 2012
(Magma) /* A000027 convolved with A000566: */ A000566:=func<n | n*(5*n-3)/2>; [&+[(n-i+1)*A000566(i): i in [0..n]]: n in [0..35]]; // Bruno Berselli, Dec 06 2012
(PARI) a(n)=(5*n-1)*binomial(n+2, 3)/4 \\ Charles R Greathouse IV, Sep 24 2015
(GAP) List([0..40], n->(5*n-1)*Binomial(n+2, 3)/4); # Muniru A Asiru, Mar 18 2019
(Sage) [(5*n-1)*binomial(n+2, 3)/4 for n in (0..40)] # G. C. Greubel, Jul 03 2019
|
|
CROSSREFS
|
Cf. A093562 ((5, 1) Pascal, column m=4).
Cf. A000332, A000566, A001622, A080852, A128064.
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.
Sequence in context: A005898 A034957 A180082 * A118414 A279218 A322239
Adjacent sequences: A002415 A002416 A002417 * A002419 A002420 A002421
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|