login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118414
a(n) = (2*n - 1) * (2^n - 1).
4
1, 9, 35, 105, 279, 693, 1651, 3825, 8687, 19437, 42987, 94185, 204775, 442341, 950243, 2031585, 4325343, 9175005, 19398619, 40894425, 85983191, 180355029, 377487315, 788529105, 1644167119, 3422552013, 7113539531, 14763950025, 30601641927, 63350767557, 130996502467, 270582939585
OFFSET
1,2
COMMENTS
Row sums of triangle A118413.
For fixed n, define a triangle T(r,c) counting down the first n odd numbers on the left side, T(r,1) = 2*(n-r)+1, and counting up odd numbers on the right side, T(r,r) = 2*(n+r)-3, r>1. The interior elements are set by T(r,c)=T(r-1,c-1) + T(r-1,c). The sum of all members in this triangle is a(n). - J. M. Bergot, Oct 12 2012
Row sums of triangle A277046. - Miquel Cerda, Sep 28 2016
FORMULA
a(n) = A005408(n-1)*(A000079(n) - 1). Corrected by Omar E. Pol, Sep 26 2016
G.f. -x*(-1-3*x+6*x^2) / ( (2*x-1)^2*(x-1)^2 ). - R. J. Mathar, Oct 15 2012
a(n) = A005408(n-1)*A000225(n). - Miquel Cerda, Sep 26 2016
EXAMPLE
The triangle T(r,c) for n=4 has row(1)=7; row(2) = 5, 9; row(3) = 3, 14, 11; row(4) = 1, 17, 25, 13, and a sum of 7+5+9+...+13 = 105 = a(4). - J. M. Bergot, Oct 12 2012
MATHEMATICA
Table[(2 n - 1) (2^n - 1), {n, 32}] (* or *)
Rest@ CoefficientList[Series[-x (-1 - 3 x + 6 x^2)/((2 x - 1)^2*(x - 1)^2), {x, 0, 32}], x] (* Michael De Vlieger, Sep 26 2016 *)
LinearRecurrence[{6, -13, 12, -4}, {1, 9, 35, 105}, 40] (* Harvey P. Dale, Sep 12 2023 *)
PROG
(Magma)[(2*n-1)*(2^n-1): n in [1..40]]; // Vincenzo Librandi, Dec 26 2010
(PARI) a(n)=(2*n-1)*(2^n-1) \\ Charles R Greathouse IV, Oct 12 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Apr 27 2006
STATUS
approved