Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Sep 12 2023 16:53:37
%S 1,9,35,105,279,693,1651,3825,8687,19437,42987,94185,204775,442341,
%T 950243,2031585,4325343,9175005,19398619,40894425,85983191,180355029,
%U 377487315,788529105,1644167119,3422552013,7113539531,14763950025,30601641927,63350767557,130996502467,270582939585
%N a(n) = (2*n - 1) * (2^n - 1).
%C Row sums of triangle A118413.
%C For fixed n, define a triangle T(r,c) counting down the first n odd numbers on the left side, T(r,1) = 2*(n-r)+1, and counting up odd numbers on the right side, T(r,r) = 2*(n+r)-3, r>1. The interior elements are set by T(r,c)=T(r-1,c-1) + T(r-1,c). The sum of all members in this triangle is a(n). - _J. M. Bergot_, Oct 12 2012
%C Row sums of triangle A277046. - _Miquel Cerda_, Sep 28 2016
%H Altug Alkan, <a href="/A118414/b118414.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-13,12,-4)
%F a(n) = A005408(n-1)*(A000079(n) - 1). Corrected by _Omar E. Pol_, Sep 26 2016
%F G.f. -x*(-1-3*x+6*x^2) / ( (2*x-1)^2*(x-1)^2 ). - _R. J. Mathar_, Oct 15 2012
%F a(n) = A005408(n-1)*A000225(n). - _Miquel Cerda_, Sep 26 2016
%e The triangle T(r,c) for n=4 has row(1)=7; row(2) = 5, 9; row(3) = 3, 14, 11; row(4) = 1, 17, 25, 13, and a sum of 7+5+9+...+13 = 105 = a(4). - _J. M. Bergot_, Oct 12 2012
%t Table[(2 n - 1) (2^n - 1), {n, 32}] (* or *)
%t Rest@ CoefficientList[Series[-x (-1 - 3 x + 6 x^2)/((2 x - 1)^2*(x - 1)^2), {x, 0, 32}], x] (* _Michael De Vlieger_, Sep 26 2016 *)
%t LinearRecurrence[{6,-13,12,-4},{1,9,35,105},40] (* _Harvey P. Dale_, Sep 12 2023 *)
%o (Magma)[(2*n-1)*(2^n-1): n in [1..40]]; // _Vincenzo Librandi_, Dec 26 2010
%o (PARI) a(n)=(2*n-1)*(2^n-1) \\ _Charles R Greathouse IV_, Oct 12 2012
%Y Cf. A014477, A000225, A005408, A118413, A277046.
%K nonn,easy
%O 1,2
%A _Reinhard Zumkeller_, Apr 27 2006