login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034957
Divide natural numbers in groups with prime(n) elements and add together.
4
1, 9, 35, 91, 242, 442, 833, 1273, 2024, 3306, 4464, 6586, 8897, 11137, 14288, 18762, 24190, 28670, 35778, 42813, 49275, 59329, 69056, 81702, 98067, 112110, 124836, 140919, 155325, 173568, 210312, 233835, 262903, 285923, 327949, 355001, 393285
OFFSET
1,2
COMMENTS
Natural numbers starting from 0,1,2,3,...
LINKS
FORMULA
From Hieronymus Fischer, Sep 27 2012: (Start)
a(n) = Sum_{k=A007504(n-1)+1..A007504(n)} (k-1), n > 1.
a(n) = (A007504(n) - A007504(n-1))*(A007504(n) + A007504(n-1) - 1)/2, n > 1.
a(n) = (A000217(A007504(n) - 1) - A000217(A007504(n-1) - 1)), n > 1.
If we define A007504(0):=0, then the formulas above are also true for n=1.
a(n) = A034959(n)/2.
a(n) = A034956(n) - A000040(n).
(End)
EXAMPLE
{0,1} #2 S=1;
{2,3,4} #3 S=9;
{5,6,7,8,9} #5 S=35;
{10,11,12,13,14,15,16} #7 S=91.
MATHEMATICA
{1}~Join~Map[Abs@ Apply[Subtract, Map[PolygonalNumber, #]] &, Partition[Accumulate@ Prime@ Range@ 37 - 1, 2, 1]] (* Michael De Vlieger, Oct 06 2019 *)
PROG
(Python)
from itertools import islice
from sympy import nextprime
def A034957_gen(): # generator of terms
a, p = 0, 2
while True:
yield p*((a<<1)+p-1)>>1
a, p = a+p, nextprime(p)
A034957_list = list(islice(A034957_gen(), 20)) # Chai Wah Wu, Mar 22 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Patrick De Geest, Oct 15 1998
STATUS
approved