login
A204203
Triangle based on (0,1/4,1) averaging array.
2
1, 1, 5, 1, 6, 13, 1, 7, 19, 29, 1, 8, 26, 48, 61, 1, 9, 34, 74, 109, 125, 1, 10, 43, 108, 183, 234, 253, 1, 11, 53, 151, 291, 417, 487, 509, 1, 12, 64, 204, 442, 708, 904, 996, 1021, 1, 13, 76, 268, 646, 1150, 1612, 1900, 2017, 2045, 1, 14, 89, 344, 914
OFFSET
1,3
COMMENTS
See A204201 for a discussion and guide to other averaging arrays.
FORMULA
From Philippe Deléham, Dec 24 2013: (Start)
T(n,n) = A036563(n+1).
Sum_{k=1..n} T(n,k) = A014480(n-1).
T(n,k) = T(n-1,k)+3*T(n-1,k-1)-2*T(n-2,k-1)-2*T(n-2,k-2), T(1,1)=1, T(2,1)=1, T(2,2)=5, T(n,k)=0 if k<1 or if k>n. (End)
EXAMPLE
First six rows:
1
1...5
1...6...13
1...7...19...29
1...8...26...48...61
1...9...34...74...109...125
MATHEMATICA
a = 0; r = 1/4; b = 1; t[1, 1] = r;
t[n_, 1] := (a + t[n - 1, 1])/2;
t[n_, n_] := (b + t[n - 1, n - 1])/2;
t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2;
u[n_] := Table[t[n, k], {k, 1, n}]
Table[u[n], {n, 1, 5}] (* averaging array *)
u = Table[(1/2) (1/r) 2^n*u[n], {n, 1, 12}];
TableForm[u] (* A204203 triangle *)
Flatten[u] (* A204203 sequence *)
CROSSREFS
Cf. A204201.
Sequence in context: A193586 A007397 A362489 * A261721 A275490 A052345
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jan 12 2012
STATUS
approved