login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204206
Triangle based on (1,3/2,2) averaging array.
2
3, 5, 7, 9, 12, 15, 17, 21, 27, 31, 33, 38, 48, 58, 63, 65, 71, 86, 106, 121, 127, 129, 136, 157, 192, 227, 248, 255, 257, 265, 293, 349, 419, 475, 503, 511, 513, 522, 558, 642, 768, 894, 978, 1014, 1023, 1025, 1035, 1080, 1200, 1410, 1662, 1872
OFFSET
1,1
COMMENTS
See A204201 for a discussion and guide to other averaging arrays.
FORMULA
From Philippe Deléham, Dec 24 2013: (Start)
T(n,n) = A000225(n+1).
Sum_{k=1..n} T(n,k) = A167667(n).
T(n,k)=T(n-1,k)+3*T(n-1,k-1)-2*T(n-2,k-1)-2*T(n-2,k-2), T(1,1)=3, T(2,1)=5, T(2,2)=7, T(n,k)=0 if k<1 or if k>n. (End)
EXAMPLE
First six rows:
3
5...7
9...12...15
17..21...27...31
33..38...48...58...63
65..71...86...106..121..127
MATHEMATICA
a = 1; r = 3/2; b = 2;
t[1, 1] = r;
t[n_, 1] := (a + t[n - 1, 1])/2;
t[n_, n_] := (b + t[n - 1, n - 1])/2;
t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2;
u[n_] := Table[t[n, k], {k, 1, n}]
Table[u[n], {n, 1, 5}] (* averaging array *)
u = Table[3 (1/2) (1/r) 2^n*u[n], {n, 1, 12}];
TableForm[u] (* A204206 triangle *)
Flatten[u] (* A204206 sequence *)
CROSSREFS
Cf. A204201.
Sequence in context: A072154 A309269 A362135 * A080751 A025218 A258782
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jan 12 2012
STATUS
approved